from sklearn import svm from sklearn import datasets from iris_classifier import IrisClassifier if __name__ == "__main__": # Load training data iris = datasets.load_iris() X, y = iris.data, iris.target # Model Training clf = svm.SVC(gamma='scale') clf.fit(X, y) # Create a iris classifier service instance iris_classifier_service = IrisClassifier() # Pack the newly trained model artifact iris_classifier_service.pack('model', clf) # Save the prediction service to disk for model serving saved_path = iris_classifier_service.save()