Merge pull request #31 from ankushagarwal/issue_summarization_serving

Create a simple tornado server to serve the model

TODO: Create a docker image for the server and deploy on kubeflow

Related to #11
This commit is contained in:
Jeremy Lewi 2018-03-08 06:17:55 -08:00 committed by GitHub
commit 0020daee7f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 77 additions and 1 deletions

View File

@ -21,10 +21,11 @@ By the end of this tutorial, you should learn how to:
datasets
* Train a Sequence-to-Sequence model using TensorFlow on the cluster using
GPUs
* Serve the model using TensorFlow Serving
* Serve the model using a Tornado Server
## Steps:
1. [Setup a Kubeflow cluster](setup_a_kubeflow_cluster.md)
1. [Training the model](training_the_model.md)
1. [Serving the model](serving_the_model.md)
1. [Teardown](teardown.md)

View File

@ -0,0 +1,54 @@
from __future__ import print_function
import logging
import tornado.web
from tornado import gen
from tornado.options import define, options, parse_command_line
from keras.models import load_model
import dill as dpickle
from seq2seq_utils import Seq2Seq_Inference
define("port", default=8888, help="run on the given port", type=int)
define("instances_key", default='instances', help="requested instances json object key")
class PredictHandler(tornado.web.RequestHandler):
@gen.coroutine
def post(self):
request_key = self.settings['request_key']
request_data = tornado.escape.json_decode(self.request.body)
model = self.settings['model']
predictions = [model.generate_issue_title(body)[1] for body in request_data[request_key]]
self.write(dict(predictions=predictions))
class IndexHandler(tornado.web.RequestHandler):
def get(self):
self.write('Hello World')
def main():
parse_command_line()
with open('body_pp.dpkl', 'rb') as f:
body_pp = dpickle.load(f)
with open('title_pp.dpkl', 'rb') as f:
title_pp = dpickle.load(f)
model = Seq2Seq_Inference(encoder_preprocessor=body_pp,
decoder_preprocessor=title_pp,
seq2seq_model=load_model('seq2seq_model_tutorial.h5'))
app = tornado.web.Application(
[
(r"/predict", PredictHandler),
(r"/", IndexHandler),
],
xsrf_cookies=False,
request_key=options.instances_key,
model=model)
app.listen(options.port)
logging.info('running at http://localhost:%s' % options.port)
tornado.ioloop.IOLoop.current().start()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,21 @@
# Serving the model
We are going to use a simple tornado server to serve the model. The [server.py](notebooks/server.py) contains the server code.
Start the server using `python server.py --port=8888`.
> The model is written in Keras and when exported as a TensorFlow model seems to be incompatible with TensorFlow Serving. So we're using our own webserver to serve this model. More details [here](https://github.com/kubeflow/examples/issues/11#issuecomment-371005885).
## Sample request
```
curl -X POST -H 'Content-Type: application/json' -d '{"instances": ["issue overview add a new property to disable detection of image stream files those ended with -is.yml from target directory. expected behaviour by default cube should not process image stream files if user does not set it. current behaviour cube always try to execute -is.yml files which can cause some problems in most of cases, for example if you are using kuberentes instead of openshift or if you use together fabric8 maven plugin with cube"]}' http://localhost:8888/predict
```
## Sample response
```
{"predictions": ["add a new property to disable detection"]}
```
Next: [Teardown](teardown.md)