mirror of https://github.com/kubeflow/examples.git
Update the examples with correct image paths and packages (#1016)
* fix ipynb images to be file paths, and not relevant urls Signed-off-by: Kimonas Sotirchos <kimwnasptd@arrikto.com> * Don't explicitly set the kale image Signed-off-by: Kimonas Sotirchos <kimwnasptd@arrikto.com> * Update packages Signed-off-by: Kimonas Sotirchos <kimwnasptd@arrikto.com> Signed-off-by: Kimonas Sotirchos <kimwnasptd@arrikto.com>
This commit is contained in:
parent
3c630d13f5
commit
067ba59439
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 G-Research Crypto Kale Pipeline\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n"
|
||||
]
|
||||
|
@ -966,7 +966,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
|
||||
"name": "g-research-crypto-forecasting"
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 G-Research Crypto Kubeflow Pipeline\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n"
|
||||
]
|
||||
|
@ -740,7 +740,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
|
||||
"name": "g-research-crypto-forecasting"
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 G-Research Crypto Original Notebook\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n"
|
||||
]
|
||||
|
@ -955,7 +955,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
|
||||
"name": "g-research-crypto-forecasting"
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
kaggle
|
||||
pandas
|
||||
tqdm
|
||||
lightgbm
|
||||
talib-binary
|
||||
kaggle
|
||||
pandas
|
||||
tqdm
|
||||
lightgbm
|
||||
ta-lib-binary
|
||||
numpy==1.20.0
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 American Express - Default Prediction Competition Kale Pipeline\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
|
@ -713,7 +713,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "american-express-defaul-prediction"
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 American Express - Default Prediction Competition Vanilla KFP Pipeline\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
|
@ -709,7 +709,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
|
||||
"name": "g-research-crypto-forecasting"
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
},
|
||||
"source": [
|
||||
"# 🪙 American Express - Default Prediction Competition Original Notebook\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
|
@ -814,7 +814,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
|
||||
"name": "g-research-crypto-forecasting"
|
||||
|
|
|
@ -861,7 +861,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "digit-recognizer-kale"
|
||||
|
|
|
@ -660,7 +660,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "6f6c9b81-54e3-414b-974a-6fe8b445a59e",
|
||||
"name": "digit_recognize_lightweight"
|
||||
|
|
|
@ -1179,7 +1179,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "digit-recognizer-kale"
|
||||
|
|
|
@ -1179,7 +1179,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "digit-recognizer-kale"
|
||||
|
|
|
@ -436,7 +436,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": false,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "c2268016-e4ff-4bea-8fc3-9b7ee1e56a25",
|
||||
"name": "Kale-pipelines"
|
||||
|
|
|
@ -69,7 +69,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -537,7 +537,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": false,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "c2268016-e4ff-4bea-8fc3-9b7ee1e56a25",
|
||||
"name": "Kale-pipelines"
|
||||
|
|
|
@ -617,7 +617,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "hm-fash-recomm"
|
||||
|
|
|
@ -556,7 +556,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -381,7 +381,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -2198,7 +2198,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "jpx-tokyo-stock-exchange"
|
||||
|
|
|
@ -625,7 +625,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "jpx-tokyo-stock-exchange"
|
||||
|
@ -693,4 +692,4 @@
|
|||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2085,7 +2085,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "jpx-tokyo-stock-exchange"
|
||||
|
|
|
@ -450,7 +450,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "store-sales-forecast"
|
||||
|
|
|
@ -577,7 +577,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "8b9ab23a-f26c-475d-baa7-1b4e6e26c816",
|
||||
"name": "store-sales-forecast"
|
||||
|
|
|
@ -2201,7 +2201,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -1729,7 +1729,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "telco"
|
||||
|
|
|
@ -969,7 +969,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "telco"
|
||||
|
|
|
@ -1647,7 +1647,6 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
Loading…
Reference in New Issue