diff --git a/github_issue_summarization/01_setup_a_kubeflow_cluster.md b/github_issue_summarization/01_setup_a_kubeflow_cluster.md index f88deb17..e0ceb8b1 100644 --- a/github_issue_summarization/01_setup_a_kubeflow_cluster.md +++ b/github_issue_summarization/01_setup_a_kubeflow_cluster.md @@ -5,11 +5,24 @@ In this part, you will setup kubeflow on an existing kubernetes cluster. ## Requirements * A kubernetes cluster + * To create a managed cluster run + ```commandline + gcloud container clusters create kubeflow-examples-cluster + ``` + or use kubeadm: [docs](https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/) * `kubectl` CLI (command line interface) pointing to the kubernetes cluster * Make sure that you can run `kubectl get nodes` from your terminal successfully * The ksonnet CLI, v0.9.2 or higher: [ks](https://ksonnet.io/#get-started) - + * In case you want to install a particular version of ksonnet, you can run + + ```commandline + export KS_VER=ks_0.11.0_linux_amd64 + wget -O /tmp/$KS_VER.tar.gz https://github.com/ksonnet/ksonnet/releases/download/v0.11.0/$KS_VER.tar.gz + mkdir -p ${HOME}/bin + tar -xvf /tmp/$KS_VER.tar.gz -C ${HOME}/bin + export PATH=$PATH:${HOME}/bin/$KS_VER + ``` ## Kubeflow setup Refer to the [user @@ -68,5 +81,6 @@ tf-job-operator-77776c8446-lpprm 1/1 Running 0 * We deployed the kubeflow-core component to our kubernetes cluster * We created a disk for storing our training data * We connected to JupyterHub and spawned a new Jupyter notebook +* For additional details and playground visit [katacoda](https://www.katacoda.com/kubeflow/scenarios/deploying-github-issue-summarization) *Next*: [Training the model](02_training_the_model.md)