mirror of https://github.com/kubeflow/examples.git
Bound example dependencies to avoid future warnings and issues (#997)
* Remove Kale default docker image tag The default docker image tag can create a conflict with the notebook image one uses for testing the example. This results in a warning dialog that we can prevent from appearing. Signed-off-by: Stefano Fioravanzo <stefano@arrikto.com> * nlp: Bound requirements.txt * nlp: Bound the version of the dependencies Fix the version of the dependencies for the natural language processing with disaster tweets example. * nlp: Fix imports Change any 'import keras.*' import to 'import tensorflow.keras.*' as the example does not require the standalone keras library. * nlp: Format inputs * nlp: Compile the model before training Move the 'model.compile' command right before 'model.fit' since Kale needs these commands to run in the same step. Signed-off-by: Dimitris Poulopoulos <dimpo@arrikto.com> * house-prices: Bound requirements.txt Fix the version number of the Python modules in 'requirements.txt'. Signed-off-by: Dimitris Poulopoulos <dimpo@arrikto.com> * digit-recognizer: Bound requirements.txt Fix the version number of the Python modules in 'requirements.txt'. Signed-off-by: Dimitris Poulopoulos <dimpo@arrikto.com> Signed-off-by: Stefano Fioravanzo <stefano@arrikto.com> Signed-off-by: Dimitris Poulopoulos <dimpo@arrikto.com> Co-authored-by: Stefano Fioravanzo <stefano@arrikto.com>
This commit is contained in:
parent
92989df736
commit
f3ebcf0caa
|
@ -861,7 +861,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "digit-recognizer-kale"
|
||||
|
|
|
@ -660,7 +660,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "6f6c9b81-54e3-414b-974a-6fe8b445a59e",
|
||||
"name": "digit_recognize_lightweight"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
pandas
|
||||
seaborn
|
||||
pandas==1.1.5
|
||||
seaborn==0.9.0
|
||||
tensorflow==2.3.0
|
||||
wget
|
||||
wget==3.2
|
||||
|
|
|
@ -1144,7 +1144,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "house-prices"
|
||||
|
|
|
@ -748,7 +748,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
numpy
|
||||
pandas
|
||||
matplotlib
|
||||
sklearn
|
||||
seaborn
|
||||
category_encoders
|
||||
xgboost
|
||||
numpy==1.18.5
|
||||
pandas==1.1.5
|
||||
matplotlib==3.3.4
|
||||
scikit-learn==0.23.2
|
||||
seaborn==0.9.0
|
||||
category_encoders==2.5.0
|
||||
xgboost==1.5.1
|
||||
|
|
|
@ -182,33 +182,37 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import seaborn as sns\n",
|
||||
"import numpy as np\n",
|
||||
"import re\n",
|
||||
"import nltk\n",
|
||||
"nltk.download('stopwords')\n",
|
||||
"nltk.download('punkt')\n",
|
||||
"import gensim\n",
|
||||
"import string\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"import seaborn as sns\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"\n",
|
||||
"from nltk.tokenize import word_tokenize\n",
|
||||
"\n",
|
||||
"from nltk.corpus import stopwords\n",
|
||||
"from nltk.util import ngrams\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
||||
"from collections import defaultdict\n",
|
||||
"from collections import Counter\n",
|
||||
"plt.style.use('ggplot')\n",
|
||||
"stop=set(stopwords.words('english'))\n",
|
||||
"import re\n",
|
||||
"from nltk.tokenize import word_tokenize\n",
|
||||
"import gensim\n",
|
||||
"import string\n",
|
||||
"from keras.preprocessing.text import Tokenizer\n",
|
||||
"from keras.preprocessing.sequence import pad_sequences\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from keras.models import Sequential\n",
|
||||
"from keras.layers import Embedding,LSTM,Dense,SpatialDropout1D\n",
|
||||
"from keras.initializers import Constant\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
|
||||
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
||||
"from tensorflow.keras.models import Sequential\n",
|
||||
"from tensorflow.keras.layers import Embedding,LSTM,Dense,SpatialDropout1D\n",
|
||||
"from tensorflow.keras.initializers import Constant\n",
|
||||
"from tensorflow.keras.optimizers import Adam\n",
|
||||
"\n"
|
||||
"\n",
|
||||
"nltk.download('stopwords')\n",
|
||||
"nltk.download('punkt')\n",
|
||||
"stop=set(stopwords.words('english'))\n",
|
||||
"plt.style.use('ggplot')"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1491,13 +1495,7 @@
|
|||
"model.add(embedding)\n",
|
||||
"model.add(SpatialDropout1D(0.2))\n",
|
||||
"model.add(LSTM(64, dropout=0.2, recurrent_dropout=0.2))\n",
|
||||
"model.add(Dense(1, activation='sigmoid'))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"optimzer=Adam(learning_rate=1e-5)\n",
|
||||
"\n",
|
||||
"model.compile(loss='binary_crossentropy',optimizer=optimzer,metrics=['accuracy'])\n",
|
||||
"\n"
|
||||
"model.add(Dense(1, activation='sigmoid'))"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -1621,6 +1619,7 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=1e-5), metrics=['accuracy'])\n",
|
||||
"history=model.fit(X_train,y_train,batch_size=4,epochs=5,validation_data=(X_test,y_test),verbose=2)"
|
||||
]
|
||||
},
|
||||
|
@ -1765,7 +1764,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "new",
|
||||
"name": "trial-with-kale"
|
||||
|
|
|
@ -557,7 +557,7 @@
|
|||
},
|
||||
"kubeflow_notebook": {
|
||||
"autosnapshot": true,
|
||||
"docker_image": "gcr.io/arrikto/jupyter-kale-py36@sha256:dd3f92ca66b46d247e4b9b6a9d84ffbb368646263c2e3909473c3b851f3fe198",
|
||||
"docker_image": "",
|
||||
"experiment": {
|
||||
"id": "",
|
||||
"name": ""
|
||||
|
|
|
@ -1,10 +1,7 @@
|
|||
seaborn
|
||||
nltk
|
||||
sklearn
|
||||
collection
|
||||
gensim
|
||||
keras
|
||||
tensorflow
|
||||
pyspellchecker
|
||||
wget
|
||||
zipfile36
|
||||
matplotlib==3.3.4
|
||||
seaborn==0.9.0
|
||||
nltk==3.6.7
|
||||
scikit-learn==0.23.2
|
||||
gensim==4.2.0
|
||||
tensorflow==2.3.0
|
||||
wget==3.2
|
||||
|
|
Loading…
Reference in New Issue