#!/usr/bin/env python ''' Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import torch import torch.nn import torch.nn.functional as f import torch.utils.data import torch.utils.data.distributed from torchvision import transforms class Net(torch.nn.Module): """ Network architecture """ def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5) self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = torch.nn.Dropout2d() self.fc1 = torch.nn.Linear(320, 50) self.fc2 = torch.nn.Linear(50, 10) def forward(self, x): # pylint: disable = arguments-differ x = f.relu(f.max_pool2d(self.conv1(x), 2)) x = f.relu(f.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = f.relu(self.fc1(x)) x = f.dropout(x, training=self.training) x = self.fc2(x) return f.log_softmax(x) class mnistddpserving(): def __init__(self): self.class_names = ["class:{}".format(str(i)) for i in range(10)] self.model = Net() # TODO parametrise path to load model, defaulting to GPU self.model.load_state_dict(torch.load("/mnt/kubeflow-gcfs/pytorch/model/model_gpu.dat", map_location='cpu')) # Ensure the model is in eval/inference mode self.model.eval() def predict(self, x, feature_names): feature_names = feature_names tensor = torch.from_numpy(x).view(-1, 28, 28) t = transforms.Normalize((0.1307,), (0.3081,)) tensor_norm = t(tensor) tensor_norm = tensor_norm.unsqueeze(0) out = self.model(tensor_norm.float()) predictions = torch.nn.functional.softmax(out) print(predictions) return predictions.detach().numpy()