"""Generates predictions using a stored model.

Uses trained model files to generate a prediction.
"""

from __future__ import print_function

import os

import numpy as np
import dill as dpickle
from keras.models import load_model
from seq2seq_utils import Seq2Seq_Inference

class IssueSummarization(object):

  def __init__(self):
    body_pp_file = os.getenv('BODY_PP_FILE', 'body_preprocessor.dpkl')
    print('body_pp file {0}'.format(body_pp_file))
    with open(body_pp_file, 'rb') as body_file:
      body_pp = dpickle.load(body_file)

    title_pp_file = os.getenv('TITLE_PP_FILE', 'title_preprocessor.dpkl')
    print('title_pp file {0}'.format(title_pp_file))
    with open(title_pp_file, 'rb') as title_file:
      title_pp = dpickle.load(title_file)

    model_file = os.getenv('MODEL_FILE', 'output_model.h5')
    print('model file {0}'.format(model_file))
    self.model = Seq2Seq_Inference(encoder_preprocessor=body_pp,
                                   decoder_preprocessor=title_pp,
                                   seq2seq_model=load_model(model_file))

  def predict(self, input_text, feature_names): # pylint: disable=unused-argument
    return np.asarray([[self.model.generate_issue_title(body[0])[1]] for body in input_text])