# Copyright 2023 kbthu. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp from kfp import dsl def mnist_train(): cop = dsl.ContainerOp( name='mnist_train', image='kbthu/tf-mnist-example:1.0.1', command=['python3'], arguments=['/mnist/mnist-train.py'], file_outputs={'output': '/model/model.keras'}, ) cop.container.set_image_pull_policy('IfNotPresent') cop.add_pvolumes({'/model': dsl.PipelineVolume(pvc='mnist-model')}) return cop def mnist_test(model): cop = dsl.ContainerOp( name='mnist_test', image='kbthu/tf-mnist-example:1.0.1', command=['python3'], arguments=['/mnist/mnist-test.py'], ) cop.container.set_image_pull_policy('IfNotPresent') cop.add_pvolumes({'/model': dsl.PipelineVolume(pvc='mnist-model')}) return cop @dsl.pipeline( name='Kubeflow pipeline example', description='Demonstrate the Kubeflow pipeline with Mnist training' ) def kfp_example(): _train_op = mnist_train() mnist_test( dsl.InputArgumentPath(_train_op.outputs['output']) ).after(_train_op) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(kfp_example, __file__ + '.yaml')