#!/bin/bash # Build and deploy a UI for accessing the trained model PROJECT=${KF_DEV_PROJECT} NAMESPACE=${KF_DEV_NAMESPACE} KF_ENV=cloud # Create the image locally cd docker docker build -t gcr.io/${PROJECT}/issue-summarization-ui-${NAMESPACE}:0.1 . # Store in the container repo gcloud docker -- push gcr.io/${PROJECT}/issue-summarization-ui-${NAMESPACE}:0.1 cd ../ks-kubeflow ks param set ui github_token ${GITHUB_TOKEN} --env ${KF_ENV} ks apply ${KF_ENV} -c ui # Open access outside the cluster kubectl port-forward $(kubectl get pods -n ${NAMESPACE} -l service=ambassador -o jsonpath='{.items[0].metadata.name}') -n ${NAMESPACE} 8080:80