{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# 🪙 American Express - Default Prediction Competition Vanilla KFP Pipeline\n",
"\n",
"\n",
"---\n",
"\n",
"In this [Kaggle competition](https://www.kaggle.com/competitions/g-research-crypto-forecasting/overview), you'll use your machine learning expertise to predict credit default. This competition is hosted by American Express. \n",
"\n",
"> American Express is a globally integrated payments company. The largest payment card issuer in the world, they provide customers with access to products, insights, and experiences that enrich lives and build business success.\n",
"\n",
"The dataset provided is an industrial scale data set of about 5.5 million rows. It has been pre-processed and converted to a lightweight version by raddar for ease of training and better result. This dataset is available in a [parquet format][1].\n",
"\n",
"[1]: https://www.kaggle.com/datasets/raddar/amex-data-integer-dtypes-parquet-format"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Install relevant libraries\n",
"\n",
"\n",
">Update pip `pip install --user --upgrade pip`\n",
"\n",
">Install and upgrade kubeflow sdk `pip install kfp --upgrade --user --quiet`\n",
"\n",
"You may need to restart your notebook kernel after installing the kfp sdk"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pip in /usr/local/lib/python3.6/dist-packages (21.3.1)\n"
]
}
],
"source": [
"!pip install --user --upgrade pip"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"!pip install kfp --upgrade --user --quiet"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Name: kfp\n",
"Version: 1.8.11\n",
"Summary: KubeFlow Pipelines SDK\n",
"Home-page: https://github.com/kubeflow/pipelines\n",
"Author: The Kubeflow Authors\n",
"Author-email: \n",
"License: UNKNOWN\n",
"Location: /home/jovyan/.local/lib/python3.6/site-packages\n",
"Requires: absl-py, click, cloudpickle, dataclasses, Deprecated, docstring-parser, fire, google-api-python-client, google-auth, google-cloud-storage, jsonschema, kfp-pipeline-spec, kfp-server-api, kubernetes, protobuf, pydantic, PyYAML, requests-toolbelt, strip-hints, tabulate, typer, typing-extensions, uritemplate\n",
"Required-by: kubeflow-kale\n"
]
}
],
"source": [
"# confirm the kfp sdk\n",
"! pip show kfp"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": [
"imports"
]
},
"outputs": [],
"source": [
"import kfp\n",
"import kfp.components as comp\n",
"import kfp.dsl as dsl\n",
"from kfp.components import OutputPath\n",
"from typing import NamedTuple"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"# Kubeflow pipeline component creation\n",
"\n",
"## Download the dataset"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# load data step\n",
"def download_data(dataset, \n",
" data_path):\n",
" \n",
" # install the necessary libraries\n",
" import os, sys, subprocess, zipfile, pickle;\n",
" subprocess.run([\"python\", \"-m\", \"pip\", \"install\", \"--upgrade\", \"pip\"])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','pandas'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','kaggle'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','wget'])\n",
" \n",
" # import libraries\n",
" import pandas as pd\n",
" import wget\n",
"\n",
" # setup kaggle environment for data download\n",
" with open('/secret/kaggle-secret/password', 'r') as file:\n",
" kaggle_key = file.read().rstrip()\n",
" with open('/secret/kaggle-secret/username', 'r') as file:\n",
" kaggle_user = file.read().rstrip()\n",
" \n",
" os.environ['KAGGLE_USERNAME'], os.environ['KAGGLE_KEY'] = kaggle_user, kaggle_key\n",
" \n",
" # create data_path directory\n",
" if not os.path.exists(data_path):\n",
" os.makedirs(data_path)\n",
" \n",
" # download kaggle's Amex-credit-prediction data\n",
" subprocess.run([\"kaggle\",\"datasets\", \"download\", \"-d\", f'raddar/{dataset}'])\n",
" \n",
" # extract Amex-credit-prediction.zip to data_path\n",
" with zipfile.ZipFile(f\"{dataset}.zip\",\"r\") as zip_ref:\n",
" zip_ref.extractall(data_path)\n",
"\n",
" # download kaggle's Amex-credit-prediction train_labels.zip\n",
" download_link = \"https://github.com/kubeflow/examples/blob/master/american-express-default-kaggle-competition/data/train_labels.zip?raw=true\"\n",
" \n",
" wget.download(download_link, f'{data_path}/train_labels.zip')\n",
"\n",
" # extract Amex-credit-prediction.zip to data_path\n",
" with zipfile.ZipFile(f'{data_path}/train_labels.zip','r') as zip_ref:\n",
" zip_ref.extractall(data_path)\n",
"\n",
" # delete zipfiles\n",
" subprocess.run(['rm', f'{dataset}.zip'])\n",
" subprocess.run(['rm', f'{data_path}/train_labels.zip'])\n",
" return(print('Done!'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# load data step\n",
"def load_data(data_path):\n",
" \n",
" # install the necessary libraries\n",
" import os, sys, subprocess, pickle;\n",
" subprocess.run([\"python\", \"-m\", \"pip\", \"install\", \"--upgrade\", \"pip\"])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','pandas'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','pyarrow'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','fastparquet'])\n",
" \n",
" # import libraries\n",
" import pandas as pd\n",
"\n",
" TRAIN_CSV = (f'{data_path}/train.parquet')\n",
" TEST_CSV = f'{data_path}/test.parquet'\n",
" TARGET_CSV = f'{data_path}/train_labels.csv'\n",
" \n",
" # read parquet TRAIN, TEST and TARGET_CSV\n",
" df_train = pd.read_parquet(TRAIN_CSV)\n",
" df_test = pd.read_parquet(TEST_CSV)\n",
" target = pd.read_csv(TARGET_CSV).target.values\n",
" print(f\"target shape: {target.shape}\")\n",
" \n",
" \n",
" # Save all data as a pickle file to be used by the feature_engineering component.\n",
" with open(f'{data_path}/df_data', 'wb') as f:\n",
" pickle.dump((df_train, target, df_test), f)\n",
" \n",
" return(print('Done!'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Feature Engineering"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# feature engineering step\n",
"\n",
"def feature_engineering(data_path):\n",
" \n",
" # install the necessary libraries\n",
" import sys, subprocess;\n",
" subprocess.run([\"python\", \"-m\", \"pip\", \"install\", \"--upgrade\", \"pip\"])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','pandas'])\n",
" \n",
" # import Library\n",
" import os, pickle, gc\n",
" import numpy as np\n",
" import pandas as pd\n",
"\n",
" # loading data\n",
" with open(f'{data_path}/df_data', 'rb') as f:\n",
" df_train, target, df_test = pickle.load(f)\n",
" \n",
" # feature engineering gotten from https://www.kaggle.com/code/ambrosm/amex-lightgbm-quickstart\n",
" def get_features(df, \n",
" features_avg, \n",
" features_min, \n",
" features_max, \n",
" features_last\n",
" ):\n",
" '''\n",
" This function takes a dataframe with all features and returns the aggregated feature grouped by the customer id.\n",
"\n",
" df - dataframe\n",
" '''\n",
" cid = pd.Categorical(df.pop('customer_ID'), ordered=True) # get customer id\n",
" last = (cid != np.roll(cid, -1)) # mask for last statement of every customer\n",
"\n",
" df_avg = (df\n",
" .groupby(cid)\n",
" .mean()[features_avg]\n",
" .rename(columns={f: f\"{f}_avg\" for f in features_avg})\n",
" ) \n",
"\n",
" df_min = (df\n",
" .groupby(cid)\n",
" .min()[features_min]\n",
" .rename(columns={f: f\"{f}_min\" for f in features_min})\n",
" )\n",
" gc.collect()\n",
" print('Computed min')\n",
"\n",
" df_max = (df\n",
" .groupby(cid)\n",
" .max()[features_max]\n",
" .rename(columns={f: f\"{f}_max\" for f in features_max})\n",
" )\n",
" gc.collect()\n",
" print('Computed max')\n",
"\n",
" df = (df.loc[last, features_last]\n",
" .rename(columns={f: f\"{f}_last\" for f in features_last})\n",
" .set_index(np.asarray(cid[last]))\n",
" )\n",
" gc.collect()\n",
" print('Computed last')\n",
"\n",
" df_ = pd.concat([df, df_min, df_max, df_avg], axis=1, )\n",
"\n",
" del df, df_avg, df_min, df_max, cid, last\n",
"\n",
" return df_\n",
" \n",
" features_avg = ['B_1', 'B_2', 'B_3', 'B_4', 'B_5', 'B_6', 'B_8', 'B_9', 'B_10', 'B_11', 'B_12', 'B_13', 'B_14', 'B_15', \n",
" 'B_16', 'B_17', 'B_18', 'B_19', 'B_20', 'B_21', 'B_22', 'B_23', 'B_24', 'B_25', 'B_28', 'B_29', 'B_30', \n",
" 'B_32', 'B_33', 'B_37', 'B_38', 'B_39', 'B_40', 'B_41', 'B_42', 'D_39', 'D_41', 'D_42', 'D_43', 'D_44', \n",
" 'D_45', 'D_46', 'D_47', 'D_48', 'D_50', 'D_51', 'D_53', 'D_54', 'D_55', 'D_58', 'D_59', 'D_60', 'D_61', \n",
" 'D_62', 'D_65', 'D_66', 'D_69', 'D_70', 'D_71', 'D_72', 'D_73', 'D_74', 'D_75', 'D_76', 'D_77', 'D_78', \n",
" 'D_80', 'D_82', 'D_84', 'D_86', 'D_91', 'D_92', 'D_94', 'D_96', 'D_103', 'D_104', 'D_108', 'D_112', 'D_113', \n",
" 'D_114', 'D_115', 'D_117', 'D_118', 'D_119', 'D_120', 'D_121', 'D_122', 'D_123', 'D_124', 'D_125', 'D_126', \n",
" 'D_128', 'D_129', 'D_131', 'D_132', 'D_133', 'D_134', 'D_135', 'D_136', 'D_140', 'D_141', 'D_142', 'D_144', \n",
" 'D_145', 'P_2', 'P_3', 'P_4', 'R_1', 'R_2', 'R_3', 'R_7', 'R_8', 'R_9', 'R_10', 'R_11', 'R_14', 'R_15', 'R_16', \n",
" 'R_17', 'R_20', 'R_21', 'R_22', 'R_24', 'R_26', 'R_27', 'S_3', 'S_5', 'S_6', 'S_7', 'S_9', 'S_11', 'S_12', 'S_13', \n",
" 'S_15', 'S_16', 'S_18', 'S_22', 'S_23', 'S_25', 'S_26']\n",
" features_min = ['B_2', 'B_4', 'B_5', 'B_9', 'B_13', 'B_14', 'B_15', 'B_16', 'B_17', 'B_19', 'B_20', 'B_28', 'B_29', 'B_33', 'B_36', \n",
" 'B_42', 'D_39', 'D_41', 'D_42', 'D_45', 'D_46', 'D_48', 'D_50', 'D_51', 'D_53', 'D_55', 'D_56', 'D_58', 'D_59', \n",
" 'D_60', 'D_62', 'D_70', 'D_71', 'D_74', 'D_75', 'D_78', 'D_83', 'D_102', 'D_112', 'D_113', 'D_115', 'D_118', 'D_119', \n",
" 'D_121', 'D_122', 'D_128', 'D_132', 'D_140', 'D_141', 'D_144', 'D_145', 'P_2', 'P_3', 'R_1', 'R_27', 'S_3', 'S_5', \n",
" 'S_7', 'S_9', 'S_11', 'S_12', 'S_23', 'S_25']\n",
" features_max = ['B_1', 'B_2', 'B_3', 'B_4', 'B_5', 'B_6', 'B_7', 'B_8', 'B_9', 'B_10', 'B_12', 'B_13', 'B_14', 'B_15', 'B_16', 'B_17', \n",
" 'B_18', 'B_19', 'B_21', 'B_23', 'B_24', 'B_25', 'B_29', 'B_30', 'B_33', 'B_37', 'B_38', 'B_39', 'B_40', 'B_42', 'D_39', \n",
" 'D_41', 'D_42', 'D_43', 'D_44', 'D_45', 'D_46', 'D_47', 'D_48', 'D_49', 'D_50', 'D_52', 'D_55', 'D_56', 'D_58', 'D_59', \n",
" 'D_60', 'D_61', 'D_63', 'D_64', 'D_65', 'D_70', 'D_71', 'D_72', 'D_73', 'D_74', 'D_76', 'D_77', 'D_78', 'D_80', 'D_82', \n",
" 'D_84', 'D_91', 'D_102', 'D_105', 'D_107', 'D_110', 'D_111', 'D_112', 'D_115', 'D_116', 'D_117', 'D_118', 'D_119', \n",
" 'D_121', 'D_122', 'D_123', 'D_124', 'D_125', 'D_126', 'D_128', 'D_131', 'D_132', 'D_133', 'D_134', 'D_135', 'D_136', \n",
" 'D_138', 'D_140', 'D_141', 'D_142', 'D_144', 'D_145', 'P_2', 'P_3', 'P_4', 'R_1', 'R_3', 'R_5', 'R_6', 'R_7', 'R_8', \n",
" 'R_10', 'R_11', 'R_14', 'R_17', 'R_20', 'R_26', 'R_27', 'S_3', 'S_5', 'S_7', 'S_8', 'S_11', 'S_12', 'S_13', 'S_15', 'S_16', \n",
" 'S_22', 'S_23', 'S_24', 'S_25', 'S_26', 'S_27']\n",
" features_last = ['B_1', 'B_2', 'B_3', 'B_4', 'B_5', 'B_6', 'B_7', 'B_8', 'B_9', 'B_10', 'B_11', 'B_12', 'B_13', 'B_14', 'B_15', 'B_16', \n",
" 'B_17', 'B_18', 'B_19', 'B_20', 'B_21', 'B_22', 'B_23', 'B_24', 'B_25', 'B_26', 'B_28', 'B_29', 'B_30', 'B_32', 'B_33', \n",
" 'B_36', 'B_37', 'B_38', 'B_39', 'B_40', 'B_41', 'B_42', 'D_39', 'D_41', 'D_42', 'D_43', 'D_44', 'D_45', 'D_46', 'D_47', \n",
" 'D_48', 'D_49', 'D_50', 'D_51', 'D_52', 'D_53', 'D_54', 'D_55', 'D_56', 'D_58', 'D_59', 'D_60', 'D_61', 'D_62', 'D_63', \n",
" 'D_64', 'D_65', 'D_69', 'D_70', 'D_71', 'D_72', 'D_73', 'D_75', 'D_76', 'D_77', 'D_78', 'D_79', 'D_80', 'D_81', 'D_82', \n",
" 'D_83', 'D_86', 'D_91', 'D_96', 'D_105', 'D_106', 'D_112', 'D_114', 'D_119', 'D_120', 'D_121', 'D_122', 'D_124', 'D_125', \n",
" 'D_126', 'D_127', 'D_130', 'D_131', 'D_132', 'D_133', 'D_134', 'D_138', 'D_140', 'D_141', 'D_142', 'D_145', 'P_2', 'P_3', \n",
" 'P_4', 'R_1', 'R_2', 'R_3', 'R_4', 'R_5', 'R_6', 'R_7', 'R_8', 'R_9', 'R_10', 'R_11', 'R_12', 'R_13', 'R_14', 'R_15', \n",
" 'R_19', 'R_20', 'R_26', 'R_27', 'S_3', 'S_5', 'S_6', 'S_7', 'S_8', 'S_9', 'S_11', 'S_12', 'S_13', 'S_16', 'S_19', 'S_20', \n",
" 'S_22', 'S_23', 'S_24', 'S_25', 'S_26', 'S_27']\n",
" \n",
" # apply feature engineering function\n",
" train = get_features(df_train, features_avg, features_min, features_max, features_last)\n",
" test = get_features(df_test, features_avg, features_min, features_max, features_last)\n",
"\n",
" # save the feature engineered data as a pickle file to be used by the modeling component.\n",
" with open(f'{data_path}/features_df', 'wb') as f:\n",
" pickle.dump((train, test, target), f)\n",
" \n",
" return(print('Done!')) "
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.01421,
"end_time": "2022-04-17T07:17:13.396620",
"exception": false,
"start_time": "2022-04-17T07:17:13.382410",
"status": "completed"
},
"tags": []
},
"source": [
"## Modelling\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# modeling step\n",
"\n",
"def modeling(data_path):\n",
" \n",
" # install the necessary libraries\n",
" import sys, subprocess;\n",
" subprocess.run([\"python\", \"-m\", \"pip\", \"install\", \"--upgrade\", \"pip\"])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','pandas'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','scikit-learn'])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','lightgbm'])\n",
" \n",
" # import Library\n",
" import os, pickle, joblib, warnings;\n",
" import pandas as pd\n",
" import numpy as np\n",
" from sklearn.model_selection import StratifiedKFold\n",
" from lightgbm import LGBMClassifier\n",
" warnings.filterwarnings(\"ignore\")\n",
" \n",
" # loading data\n",
" with open(f'{data_path}/features_df', 'rb') as f:\n",
" train, test, target = pickle.load(f)\n",
" \n",
" # define the evaluation metric\n",
" # From https://www.kaggle.com/competitions/amex-default-prediction/discussion/328020\n",
" def amex_metric(y_true: np.array, y_pred: np.array) -> float:\n",
"\n",
" # count of positives and negatives\n",
" n_pos = y_true.sum()\n",
" n_neg = y_true.shape[0] - n_pos\n",
"\n",
" # sorting by descring prediction values\n",
" indices = np.argsort(y_pred)[::-1]\n",
" preds, target = y_pred[indices], y_true[indices]\n",
"\n",
" # filter the top 4% by cumulative row weights\n",
" weight = 20.0 - target * 19.0\n",
" cum_norm_weight = (weight / weight.sum()).cumsum()\n",
" four_pct_filter = cum_norm_weight <= 0.04\n",
"\n",
" # default rate captured at 4%\n",
" d = target[four_pct_filter].sum() / n_pos\n",
"\n",
" # weighted gini coefficient\n",
" lorentz = (target / n_pos).cumsum()\n",
" gini = ((lorentz - cum_norm_weight) * weight).sum()\n",
"\n",
" # max weighted gini coefficient\n",
" gini_max = 10 * n_neg * (1 - 19 / (n_pos + 20 * n_neg))\n",
"\n",
" # normalized weighted gini coefficient\n",
" g = gini / gini_max\n",
"\n",
" return 0.5 * (g + d)\n",
"\n",
" def lgb_amex_metric(y_true, y_pred):\n",
" \"\"\"The competition metric with lightgbm's calling convention\"\"\"\n",
" return ('amex_metric_score',\n",
" amex_metric(y_true, y_pred),\n",
" True)\n",
" \n",
" # Cross-validation\n",
"\n",
" features = [f for f in train.columns if f != 'customer_ID' and f != 'target']\n",
"\n",
" print(f\"{len(features)} features\")\n",
"\n",
" score_list = [] # lgbm score per fold\n",
" y_pred_list = [] # fold predictions list\n",
"\n",
" # init StratifiedKFold\n",
" kf = StratifiedKFold(n_splits=4)\n",
"\n",
" for fold, (idx_tr, idx_va) in enumerate(kf.split(train, target)):\n",
"\n",
" X_tr, X_va, y_tr, y_va, model = None, None, None, None, None\n",
"\n",
" X_tr = train.iloc[idx_tr][features]\n",
" X_va = train.iloc[idx_va][features]\n",
" y_tr = target[idx_tr]\n",
" y_va = target[idx_va]\n",
"\n",
" # init model\n",
" model = LGBMClassifier(n_estimators=30,\n",
" learning_rate=0.1, \n",
" num_leaves=100,\n",
" random_state=2022)\n",
" # fit model\n",
" model.fit(X_tr, y_tr,\n",
" eval_set = [(X_va, y_va)], \n",
" eval_metric=[lgb_amex_metric],\n",
" verbose = 20,\n",
" early_stopping_rounds=30)\n",
"\n",
" X_tr, y_tr = None, None\n",
"\n",
" # fold validation set predictions\n",
" y_va_pred = model.predict_proba(X_va, raw_score=True)\n",
"\n",
" # model score\n",
" score = amex_metric(y_va, y_va_pred)\n",
"\n",
" print(f\"Score = {score}\")\n",
" score_list.append(score)\n",
"\n",
" # test set predictions\n",
" y_pred_list.append(model.predict_proba(test[features], raw_score=True))\n",
"\n",
" print(f\"Fold {fold}\") \n",
"\n",
" # save model\n",
" joblib.dump(model, f'{data_path}/lgb.jl')\n",
" \n",
" return(print('Done!')) "
]
},
{
"cell_type": "markdown",
"metadata": {
"papermill": {
"duration": 0.01428,
"end_time": "2022-04-17T07:17:23.959655",
"exception": false,
"start_time": "2022-04-17T07:17:23.945375",
"status": "completed"
},
"tags": []
},
"source": [
"## Evaluation"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# evaluation step\n",
"\n",
"def evaluation_result(data_path, \n",
" metrics_path: OutputPath(str)) -> NamedTuple(\"EvaluationOutput\", [(\"mlpipeline_metrics\", \"Metrics\")]):\n",
" \n",
" # import Library\n",
" import sys, subprocess;\n",
" subprocess.run([\"python\", \"-m\", \"pip\", \"install\", \"--upgrade\", \"pip\"])\n",
" subprocess.run([sys.executable, '-m', 'pip', 'install','lightgbm'])\n",
" import json;\n",
" from collections import namedtuple\n",
" import joblib\n",
" import lightgbm as lgb\n",
" from lightgbm import LGBMRegressor\n",
" \n",
" # load model\n",
" model = joblib.load(f'{data_path}/lgb.jl')\n",
"\n",
" # model evaluation\n",
" binary_logloss = model.booster_.best_score.get('valid_0').get('binary_logloss')\n",
" amex_metric_score = model.booster_.best_score.get('valid_0').get('amex_metric_score')\n",
" \n",
" # create kubeflow metric metadata for UI \n",
" metrics = {\n",
" 'metrics': [\n",
" {'name': 'binary-logloss',\n",
" 'numberValue': binary_logloss,\n",
" 'format': 'RAW'},\n",
" {'name': 'amex-metric-score',\n",
" 'numberValue': amex_metric_score,\n",
" 'format': 'RAW'}\n",
" ]\n",
" }\n",
" \n",
"\n",
" with open(metrics_path, \"w\") as f:\n",
" json.dump(metrics, f)\n",
"\n",
" output_tuple = namedtuple(\"EvaluationOutput\", [\"mlpipeline_metrics\"])\n",
"\n",
" return output_tuple(json.dumps(metrics))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create pipeline components \n",
"\n",
"using `create_component_from_func`"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# create light weight components\n",
"download_op = comp.create_component_from_func(download_data,base_image=\"python:3.7.1\")\n",
"load_op = comp.create_component_from_func(load_data,base_image=\"python:3.7.1\")\n",
"feature_eng_op = comp.create_component_from_func(feature_engineering,base_image=\"python:3.7.1\")\n",
"modeling_op = comp.create_component_from_func(modeling, base_image=\"python:3.7.1\")\n",
"evaluation_op = comp.create_component_from_func(evaluation_result, base_image=\"python:3.7.1\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Kubeflow pipeline creation"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# define pipeline\n",
"@dsl.pipeline(name=\"american-express-default-prediction-pipeline\", \n",
" description=\"predicting credit default.\")\n",
"\n",
"# Define parameters to be fed into pipeline\n",
"def american_express_default_prediction_pipeline(\n",
" dataset: str,\n",
" data_path: str\n",
" ):\n",
" # Define volume to share data between components.\n",
" vop = dsl.VolumeOp(\n",
" name=\"create_data_volume\",\n",
" resource_name=\"data-volume\", \n",
" size=\"24Gi\", \n",
" modes=dsl.VOLUME_MODE_RWO)\n",
" \n",
" \n",
" # Create download container.\n",
" download_container = download_op(dataset, data_path)\\\n",
" .add_pvolumes({data_path: vop.volume}).add_pod_label(\"kaggle-secret\", \"true\")\n",
" # Create load container.\n",
" load_container = load_op(data_path)\\\n",
" .add_pvolumes({data_path: download_container.pvolume})\n",
" # Create feature engineering container.\n",
" feat_eng_container = feature_eng_op(data_path)\\\n",
" .add_pvolumes({data_path: load_container.pvolume})\n",
" # Create modeling container.\n",
" modeling_container = modeling_op(data_path)\\\n",
" .add_pvolumes({data_path: feat_eng_container.pvolume})\n",
" # Create prediction container.\n",
" evaluation_container = evaluation_op(data_path).add_pvolumes({data_path: modeling_container.pvolume})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# create client that would enable communication with the Pipelines API server \n",
"client = kfp.Client()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# arguments\n",
"dataset = \"amex-data-integer-dtypes-parquet-format\"\n",
"data_path = \"/mnt\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Experiment details."
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"Run details."
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pipeline_func = american_express_default_prediction_pipeline\n",
"\n",
"experiment_name = 'american_express_default_prediction_pipeline_lightweight'\n",
"run_name = pipeline_func.__name__ + ' run'\n",
"\n",
"arguments = {\n",
" \"dataset\": dataset,\n",
" \"data_path\": data_path\n",
" }\n",
"\n",
"# Compile pipeline to generate compressed YAML definition of the pipeline.\n",
"kfp.compiler.Compiler().compile(pipeline_func, \n",
" '{}.zip'.format(experiment_name))\n",
"\n",
"# Submit pipeline directly from pipeline function\n",
"run_result = client.create_run_from_pipeline_func(pipeline_func, \n",
" experiment_name=experiment_name, \n",
" run_name=run_name, \n",
" arguments=arguments\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"kubeflow_notebook": {
"autosnapshot": true,
"experiment": {
"id": "2efb8e27-3b2e-439b-a53c-b1f9d7b94cfc",
"name": "g-research-crypto-forecasting"
},
"experiment_name": "g-research-crypto-forecasting",
"katib_metadata": {
"algorithm": {
"algorithmName": "grid"
},
"maxFailedTrialCount": 3,
"maxTrialCount": 12,
"objective": {
"objectiveMetricName": "",
"type": "minimize"
},
"parallelTrialCount": 3,
"parameters": []
},
"katib_run": false,
"pipeline_description": "Forecasting short term returns in 14 popular cryptocurrencies.",
"pipeline_name": "g-research-crypto-forecasting-pipeline",
"snapshot_volumes": true,
"steps_defaults": [
"label:access-ml-pipeline:true",
"label:kaggle-secret:true",
"label:access-rok:true"
],
"volume_access_mode": "rwm",
"volumes": [
{
"annotations": [],
"mount_point": "/home/jovyan",
"name": "test-workspace-qtvmt",
"size": 32,
"size_type": "Gi",
"snapshot": false,
"type": "clone"
}
]
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
},
"papermill": {
"default_parameters": {},
"duration": 32.012084,
"end_time": "2022-04-17T07:17:25.053666",
"environment_variables": {},
"exception": null,
"input_path": "__notebook__.ipynb",
"output_path": "__notebook__.ipynb",
"parameters": {},
"start_time": "2022-04-17T07:16:53.041582",
"version": "2.3.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}