# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl import kfp.gcp as gcp # from kfp.dsl.types import String @dsl.pipeline( name='Github issue summarization', description='Demonstrate Tensor2Tensor-based training and TF-Serving' ) def gh_summ_serveonly( github_token: str = 'YOUR_GITHUB_TOKEN_HERE', ): serve = dsl.ContainerOp( name='serve', image='gcr.io/google-samples/ml-pipeline-kubeflow-tfserve:v2', arguments=["--model_name", 'ghsumm-%s' % (dsl.RUN_ID_PLACEHOLDER,), "--model_path", 'gs://aju-dev-demos-codelabs/kubecon/example_t2t_model/model_output/export' ] ).apply(gcp.use_gcp_secret('user-gcp-sa')) webapp = dsl.ContainerOp( name='webapp', image='gcr.io/google-samples/ml-pipeline-webapp-launcher:v3ap', arguments=["--model_name", 'ghsumm-%s' % (dsl.RUN_ID_PLACEHOLDER,), "--github_token", github_token] ) webapp.after(serve) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(gh_summ_serveonly, __file__ + '.tar.gz')