examples/github_issue_summarization/Pachyderm_Example/code/IssueSummarization.py

36 lines
1.2 KiB
Python

"""Generates predictions using a stored model.
Uses trained model files to generate a prediction.
"""
from __future__ import print_function
import os
import numpy as np
import dill as dpickle
from keras.models import load_model
from seq2seq_utils import Seq2Seq_Inference
class IssueSummarization(object):
def __init__(self):
body_pp_file = os.getenv('BODY_PP_FILE', 'body_preprocessor.dpkl')
print('body_pp file {0}'.format(body_pp_file))
with open(body_pp_file, 'rb') as body_file:
body_pp = dpickle.load(body_file)
title_pp_file = os.getenv('TITLE_PP_FILE', 'title_preprocessor.dpkl')
print('title_pp file {0}'.format(title_pp_file))
with open(title_pp_file, 'rb') as title_file:
title_pp = dpickle.load(title_file)
model_file = os.getenv('MODEL_FILE', 'output_model.h5')
print('model file {0}'.format(model_file))
self.model = Seq2Seq_Inference(encoder_preprocessor=body_pp,
decoder_preprocessor=title_pp,
seq2seq_model=load_model(model_file))
def predict(self, input_text, feature_names): # pylint: disable=unused-argument
return np.asarray([[self.model.generate_issue_title(body[0])[1]] for body in input_text])