examples/github_issue_summarization/Pachyderm_Example/code/process_data.py

27 lines
914 B
Python

import argparse
import pandas as pd
from sklearn.model_selection import train_test_split
# Parsing flags.
parser = argparse.ArgumentParser()
parser.add_argument("--input_csv")
parser.add_argument("--sample_size", type=int, default=2000000)
parser.add_argument("--output_traindf_csv")
parser.add_argument("--output_testdf_csv")
args = parser.parse_args()
print(args)
pd.set_option('display.max_colwidth', 500)
# Read in data sample 2M rows (for speed of tutorial)
traindf, testdf = train_test_split(pd.read_csv(args.input_csv).sample(n=args.sample_size),
test_size=.10)
# Print stats about the shape of the data.
print('Train: {:,} rows {:,} columns'.format(traindf.shape[0], traindf.shape[1]))
print('Test: {:,} rows {:,} columns'.format(testdf.shape[0], testdf.shape[1]))
# Store output as CSV.
traindf.to_csv(args.output_traindf_csv)
testdf.to_csv(args.output_testdf_csv)