examples/pipelines-demo/dsl/dsl-example.py

59 lines
1.7 KiB
Python

# Copyright 2023 kbthu. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import kfp
from kfp import dsl
from kfp.components import func_to_container_op
def inference():
return dsl.ContainerOp(
name='inference',
image='bash:5.1',
command=['sh', '-c'],
arguments=['echo $(( $RANDOM % 10 + 1 ))']
)
@func_to_container_op
def training() -> str:
import random
result = random.choice(['pass', 'fail'])
return result
@func_to_container_op
def print_op(message: str):
print(message)
@dsl.pipeline(
name='Kubeflow pipeline example',
description='Demonstrate the flow control of Kubeflow pipeline'
)
def dsl_example(stage: dsl.PipelineParam):
with dsl.Condition(stage == 'training'):
train_op = training()
with dsl.Condition(train_op.output == 'pass'):
print_op('Training pass. Do inference')
infer_op = inference()
with dsl.Condition(train_op.output == 'fail'):
print_op('Training fail. Stop')
# inference stage
with dsl.Condition(stage != 'training'):
infer_op = inference()
if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(dsl_example, __file__ + '.yaml')