examples/tensorflow_cuj/neural_machine_translation/nmt_with_attention.py

297 lines
12 KiB
Python

#!/usr/bin/env python
#coding: utf-8
#Neural Machine Translation with Attention
#This machine translation tutorial trains an [encoder-decoder architecture with attention](https://github.com/tensorflow/nmt) on a [Spanish-English dataset](http://www.manythings.org/anki/).
import re
import os
import io
import time
import argparse
import numpy as np
import unicodedata
import tensorflow as tf
from sklearn.model_selection import train_test_split
class Encoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
super(Encoder, self).__init__()
self.batch_sz = batch_sz
self.enc_units = enc_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.enc_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
def call(self, x, hidden):
x = self.embedding(x)
output, state = self.gru(x, initial_state = hidden)
return output, state
def initialize_hidden_state(self):
return tf.zeros((self.batch_sz, self.enc_units))
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, query, values):
# query hidden state shape == (batch_size, hidden size)
# query_with_time_axis shape == (batch_size, 1, hidden size)
# values shape == (batch_size, max_len, hidden size)
# we are doing this to broadcast addition along the time axis to calculate the score
query_with_time_axis = tf.expand_dims(query, 1)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
# the shape of the tensor before applying self.V is (batch_size, max_length, units)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
super(Decoder, self).__init__()
self.batch_sz = batch_sz
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size)
# used for attention
self.attention = BahdanauAttention(self.dec_units)
def call(self, x, hidden, enc_output):
# enc_output shape == (batch_size, max_length, hidden_size)
context_vector, attention_weights = self.attention(hidden, enc_output)
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
# passing the concatenated vector to the GRU
output, state = self.gru(x)
# output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))
# output shape == (batch_size, vocab)
x = self.fc(output)
return x, state, attention_weights
# Converts the unicode file to ascii
def unicode_to_ascii(s):
return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')
def preprocess_sentence(w):
w = unicode_to_ascii(w.lower().strip())
# creating a space between a word and the punctuation following it
# eg: "he is a boy." => "he is a boy ."
# Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation
w = re.sub(r"([?.!,¿])", r" \1 ", w)
w = re.sub(r'[" "]+', " ", w)
# replacing everything with space except (a-z, A-Z, ".", "?", "!", ",")
w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)
w = w.strip()
# adding a start and an end token to the sentence
# so that the model know when to start and stop predicting.
w = '<start> ' + w + ' <end>'
return w
# 1. Remove the accents
# 2. Clean the sentences
# 3. Return word pairs in the format: [ENGLISH, SPANISH]
def create_dataset(path, num_examples):
lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
word_pairs = [[preprocess_sentence(w) for w in l.split('\t')] for l in lines[:num_examples]]
return zip(*word_pairs)
def tokenize(lang):
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='')
lang_tokenizer.fit_on_texts(lang)
tensor = lang_tokenizer.texts_to_sequences(lang)
tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post')
return tensor, lang_tokenizer
def load_dataset(path, num_examples=None):
# creating cleaned input, output pairs
targ_lang, inp_lang = create_dataset(path, num_examples)
input_tensor, inp_lang_tokenizer = tokenize(inp_lang)
target_tensor, targ_lang_tokenizer = tokenize(targ_lang)
return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer
def data_loader(hyperparams):
# Download the file
data_dir = os.path.join(os.getcwd(), 'dataset')
data_url = 'http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip'
path_to_zip = tf.keras.utils.get_file(os.path.join(data_dir, 'spa-eng.zip'), origin=data_url, extract=True)
path_to_file = os.path.join(os.path.dirname(path_to_zip), "spa-eng", "spa.txt")
print("Path to stored file: {}".format(path_to_file))
num_examples = hyperparams['NUM_EXAMPLES']
batch_size = hyperparams['BATCH_SIZE']
input_tensor, target_tensor, inp_lang, targ_lang = load_dataset(path_to_file, num_examples)
max_length_targ, max_length_inp = target_tensor.shape[1], input_tensor.shape[1]
(input_tensor_train, input_tensor_val,
target_tensor_train, target_tensor_val) = train_test_split(input_tensor, target_tensor, test_size=hyperparams['TEST_SIZE'])
buffer_size = len(input_tensor_train)
steps_per_epoch = len(input_tensor_train)//batch_size
vocab_inp_size = len(inp_lang.word_index)+1
vocab_tar_size = len(targ_lang.word_index)+1
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(buffer_size)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset, vocab_inp_size, vocab_tar_size, max_length_inp, max_length_targ, steps_per_epoch, targ_lang
def define_model(hyperparams, vocab_inp_size, vocab_tar_size):
embedding_dim = 255
units = 1024
encoder = Encoder(vocab_inp_size, embedding_dim, units, hyperparams['BATCH_SIZE'])
attention_layer = BahdanauAttention(10)
decoder = Decoder(vocab_tar_size, embedding_dim, units, hyperparams['BATCH_SIZE'])
return encoder, attention_layer, decoder
def loss_function(real, pred):
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
@tf.function
def train_step(inp, targ, enc_hidden, optimizer, encoder, decoder, attention_layer, targ_lang, hyperparams):
loss = 0
with tf.GradientTape() as tape:
enc_output, enc_hidden = encoder(inp, enc_hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([targ_lang.word_index['<start>']] * hyperparams['BATCH_SIZE'], 1)
# Teacher forcing - feeding the target as the next input
for t in range(1, targ.shape[1]):
# passing enc_output to the decoder
predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)
loss += loss_function(targ[:, t], predictions)
# using teacher forcing
dec_input = tf.expand_dims(targ[:, t], 1)
batch_loss = (loss / int(targ.shape[1]))
variables = encoder.trainable_variables + decoder.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
return batch_loss
class NeuralMachineTranslation(object):
def __init__(self, learning_rate=0.01, batch_size=64, epochs=2, num_examples=3000, test_size=0.2):
self.hyperparams = {'BATCH_SIZE': batch_size, 'NUM_EXAMPLES': num_examples, 'TEST_SIZE': test_size}
self.model_file = "lstm_trained"
self.learning_rate = learning_rate
self.epochs = epochs
(self.dataset, self.vocab_inp_size, self.vocab_tar_size, self.max_length_inp,
self.max_length_targ, self.steps_per_epoch, self.targ_lang) = data_loader(self.hyperparams)
self.encoder, self.attention_layer, self.decoder = define_model(self.hyperparams, self.vocab_inp_size, self.vocab_tar_size)
def train(self):
optimizer = tf.keras.optimizers.Adam()
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
encoder=self.encoder,
decoder=self.decoder)
for epoch in range(self.epochs):
enc_hidden = self.encoder.initialize_hidden_state()
total_loss = 0
for (batch, (inp, targ)) in enumerate(self.dataset.take(self.steps_per_epoch)):
batch_loss = train_step(inp, targ, enc_hidden, optimizer, self.encoder,
self.decoder, self.attention_layer, self.targ_lang, self.hyperparams)
total_loss += batch_loss
# saving (checkpoint) the model every 2 epochs
if (epoch + 1) % 2 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print("epoch {}:\nloss={:.2f}\n".format(epoch + 1, total_loss / self.steps_per_epoch))
def translate(sentence):
max_length_inp, max_length_targ = self.max_length_inp, self.max_length_targ
sentence = preprocess_sentence(sentence)
inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
maxlen=max_length_inp,
padding='post')
inputs = tf.convert_to_tensor(inputs)
result = ''
hidden = [tf.zeros((1, units))]
enc_out, enc_hidden = self.encoder(inputs, hidden)
dec_hidden = enc_hidden
dec_input = tf.expand_dims([targ_lang.word_index['<start>']], 0)
for t in range(max_length_targ):
predictions, dec_hidden, attention_weights = self.decoder(dec_input,
dec_hidden,
enc_out)
predicted_id = tf.argmax(predictions[0]).numpy()
result += targ_lang.index_word[predicted_id] + ' '
if targ_lang.index_word[predicted_id] == '<end>':
return result, sentence, attention_plot
# the predicted ID is fed back into the model
dec_input = tf.expand_dims([predicted_id], 0)
return result
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-lr", "--learning_rate", default="1e-4", help="Learning rate for the Keras optimizer")
parser.add_argument("-bsz", "--batch_size", default="64", help="Batch size for each step of learning")
parser.add_argument("-e", "--epochs", default="2", help="Number of epochs in each trial")
parser.add_argument("-ne", "--num_examples", default="3000", help="Number of examples to train on")
args = parser.parse_args()
learning_rate = float(args.learning_rate)
batch_size = int(args.batch_size)
epochs = int(args.epochs)
num_examples = int(args.num_examples)
model = NeuralMachineTranslation(learning_rate, batch_size, epochs, num_examples)
model.train()