examples/object_detection/serving_script/predict.py

56 lines
1.5 KiB
Python

""" Script to send prediction request.
Usage:
python predict.py --url=YOUR_KF_HOST/models/coco --input_image=YOUR_LOCAL_IMAGE
--output_image=OUTPUT_IMAGE_NAME.
This will save the prediction result as OUTPUT_IMAGE_NAME.
The output image is the input image with the detected bounding boxes.
"""
import argparse
import json
import requests
import numpy as np
from PIL import Image
import visualization_utils as vis_util
WIDTH = 1024
HEIGHT = 768
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--url", help='The url to send the request')
parser.add_argument("--input_image", default='image1.jpg')
parser.add_argument("--output_image", default='output.jpg')
args = parser.parse_args()
img = Image.open(args.input_image)
img = img.resize((WIDTH, HEIGHT), Image.ANTIALIAS)
img_np = np.array(img)
res = requests.post(
args.url,
data=json.dumps({"instances": [{"inputs": img_np.tolist()}]}))
if res.status_code != 200:
print('Failed: {}'.format(res.text))
return
output_dict = json.loads(res.text).get('predictions')[0]
vis_util.visualize_boxes_and_labels_on_image_array(
img_np,
np.array(output_dict['detection_boxes']),
map(int, output_dict['detection_classes']),
output_dict['detection_scores'],
{},
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
output_image = Image.fromarray(img_np)
output_image.save(args.output_image)
if __name__ == '__main__':
main()