examples/mnist/testing/tfjob_test.py

100 lines
3.5 KiB
Python

"""Test training using TFJob.
This file tests that we can submit the job from ksonnet
and that the job runs to completion.
It is an integration test as it depends on having access to
a Kubeflow deployment to submit the TFJob to.
Python Path Requirements:
kubeflow/tf-operator/py - https://github.com/kubeflow/tf-operator
* Provides utilities for testing TFJobs
kubeflow/testing/py - https://github.com/kubeflow/testing/tree/master/py
* Provides utilities for testing
Manually running the test
1. Configure your KUBECONFIG file to point to the desired cluster
2. Set --params=name=${NAME},namespace=${NAMESPACE}
* name should be the name for your job
* namespace should be the namespace to use
3. To test a new image set the parameter image e.g
--params=name=${NAME},namespace=${NAMESPACE},image=${IMAGE}
4. To control how long it trains set sample_size and num_epochs
--params=numTrainSteps=10,batchSize=10,...
"""
import json
import logging
import os
from kubernetes import client as k8s_client
from py import tf_job_client #pylint: disable=no-name-in-module
from py import test_runner #pylint: disable=no-name-in-module
from kubeflow.testing import ks_util
from kubeflow.testing import test_util
from kubeflow.testing import util
class TFJobTest(test_util.TestCase):
def __init__(self, args):
namespace, name, env = test_runner.parse_runtime_params(args)
self.app_dir = args.app_dir
if not self.app_dir:
self.app_dir = os.path.join(os.path.dirname(__file__), "..",
"ks_app")
self.app_dir = os.path.abspath(self.app_dir)
logging.info("--app_dir not set defaulting to: %s", self.app_dir)
self.env = env
self.namespace = namespace
self.params = args.params
self.ks_cmd = ks_util.get_ksonnet_cmd(self.app_dir)
super(TFJobTest, self).__init__(class_name="TFJobTest", name=name)
def test_train(self):
# We repeat the test multiple times.
# This ensures that if we delete the job we can create a new job with the
# same name.
api_client = k8s_client.ApiClient()
component = "train"
# Setup the ksonnet app
ks_util.setup_ks_app(self.app_dir, self.env, self.namespace, component,
self.params)
# Create the TF job
util.run([self.ks_cmd, "apply", self.env, "-c", component],
cwd=self.app_dir)
logging.info("Created job %s in namespaces %s", self.name, self.namespace)
# Wait for the job to complete.
logging.info("Waiting for job to finish.")
results = tf_job_client.wait_for_job(
api_client,
self.namespace,
self.name,
status_callback=tf_job_client.log_status)
logging.info("Final TFJob:\n %s", json.dumps(results, indent=2))
# Check for errors creating pods and services. Can potentially
# help debug failed test runs.
creation_failures = tf_job_client.get_creation_failures_from_tfjob(
api_client, self.namespace, results)
if creation_failures:
logging.warning(creation_failures)
if not tf_job_client.job_succeeded(results):
self.failure = "Job {0} in namespace {1} in status {2}".format( # pylint: disable=attribute-defined-outside-init
self.name, self.namespace, results.get("status", {}))
logging.error(self.failure)
return
# We don't delete the jobs. We rely on TTLSecondsAfterFinished
# to delete old jobs. Leaving jobs around should make it
# easier to debug.
if __name__ == "__main__":
test_runner.main(module=__name__)