examples/pipelines/mnist-pipelines/mnist_pipeline.py

104 lines
2.9 KiB
Python

# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Kubeflow Pipelines MNIST example
Run this script to compile pipeline
"""
import kfp.dsl as dsl
import kfp.gcp as gcp
import kfp.onprem as onprem
platform = 'GCP'
@dsl.pipeline(
name='MNIST',
description='A pipeline to train and serve the MNIST example.'
)
def mnist_pipeline(model_export_dir='gs://your-bucket/export',
train_steps='200',
learning_rate='0.01',
batch_size='100',
pvc_name=''):
"""
Pipeline with three stages:
1. train an MNIST classifier
2. deploy a tf-serving instance to the cluster
3. deploy a web-ui to interact with it
"""
train = dsl.ContainerOp(
name='train',
image='gcr.io/kubeflow-examples/mnist/model:v20190304-v0.2-176-g15d997b',
arguments=[
"/opt/model.py",
"--tf-export-dir", model_export_dir,
"--tf-train-steps", train_steps,
"--tf-batch-size", batch_size,
"--tf-learning-rate", learning_rate
]
)
serve_args = [
'--model-export-path', model_export_dir,
'--server-name', "mnist-service"
]
if platform != 'GCP':
serve_args.extend([
'--cluster-name', "mnist-pipeline",
'--pvc-name', pvc_name
])
serve = dsl.ContainerOp(
name='serve',
image='gcr.io/ml-pipeline/ml-pipeline-kubeflow-deployer:'
'7775692adf28d6f79098e76e839986c9ee55dd61',
arguments=serve_args
)
serve.after(train)
webui_args = [
'--image', 'gcr.io/kubeflow-examples/mnist/web-ui:'
'v20190304-v0.2-176-g15d997b-pipelines',
'--name', 'web-ui',
'--container-port', '5000',
'--service-port', '80',
'--service-type', "LoadBalancer"
]
if platform != 'GCP':
webui_args.extend([
'--cluster-name', "mnist-pipeline"
])
web_ui = dsl.ContainerOp(
name='web-ui',
image='gcr.io/kubeflow-examples/mnist/deploy-service:latest',
arguments=webui_args
)
web_ui.after(serve)
steps = [train, serve, web_ui]
for step in steps:
if platform == 'GCP':
step.apply(gcp.use_gcp_secret('user-gcp-sa'))
else:
step.apply(onprem.mount_pvc(pvc_name, 'local-storage', '/mnt'))
if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(mnist_pipeline, __file__ + '.tar.gz')