examples/github_issue_summarization
Michelle Casbon 836ad70421 Fix model file upload (#160)
* Add component parameters

Add model_url & port arguments to flask app
Add service_type, image, and model_url parameters to ui component
Fix problem argument in tensor2tensor component

* Fix broken UI component

Fix broken UI component structure by adding all, service, & deployment parts
Add parameter defaults for tfjob to resolve failures deploying other components

* Add missing imports in flask app

Fix syntax error in argument parsing
Remove underscores from parameter names to workaround ksonnet bug #554: https://github.com/ksonnet/ksonnet/issues/554

* Fix syntax errors in t2t instructions

Add CPU image build arg to docker build command for t2t-training
Fix link to ksonnet app dir
Correct param names for tensor2tensor component
Add missing params for tensor2tensor component
Fix apply command syntax
Swap out log view pod for t2t-master instead of tf-operator
Fix link to training with tfjob

* Fix model file upload

Update default params for tfjob-v1alpha2
Fix build directory path in Makefile

* Resolve lint issues

Lines too long

* Add specific image tag to tfjob-v1alpha2 default

* Fix defaults for training output files

Update image tag
Add UI image tag

* Revert service account secret details

Update associated readme
2018-06-29 18:41:20 -07:00
..
docker Add component parameters (#155) 2018-06-28 13:52:21 -07:00
ks-kubeflow Fix model file upload (#160) 2018-06-29 18:41:20 -07:00
notebooks Fix model file upload (#160) 2018-06-29 18:41:20 -07:00
scripts Add demo scripts & improvements to instructions (#84) 2018-04-23 16:23:59 -07:00
sql Remove third_party folder & MIT license file 2018-02-27 13:17:42 -05:00
tensor2tensor/github Fix v1alpha2 version of the T2T training job. (#158) 2018-06-29 12:26:18 -07:00
workflow Add .pylintrc (#61) 2018-03-29 08:25:02 -07:00
01_setup_a_kubeflow_cluster.md Edit navigation and markdown for github example (#93) 2018-05-09 12:12:54 -07:00
02_tensor2tensor_training.md Add component parameters (#155) 2018-06-28 13:52:21 -07:00
02_training_the_model.md Edit navigation and markdown for github example (#93) 2018-05-09 12:12:54 -07:00
02_training_the_model_tfjob.md Fix model file upload (#160) 2018-06-29 18:41:20 -07:00
03_serving_the_model.md Edit navigation and markdown for github example (#93) 2018-05-09 12:12:54 -07:00
04_querying_the_model.md Edit navigation and markdown for github example (#93) 2018-05-09 12:12:54 -07:00
05_teardown.md Edit navigation and markdown for github example (#93) 2018-05-09 12:12:54 -07:00
README.md Update README.md (#116) 2018-05-20 17:43:48 -07:00
requirements.txt Remove third_party folder & MIT license file 2018-02-27 13:17:42 -05:00

README.md

End-to-End kubeflow tutorial using a Sequence-to-Sequence model

This example demonstrates how you can use kubeflow end-to-end to train and serve a Sequence-to-Sequence model on an existing kubernetes cluster. This tutorial is based upon @hamelsmu's article "How To Create Data Products That Are Magical Using Sequence-to-Sequence Models".

Goals

There are two primary goals for this tutorial:

  • Demonstrate an End-to-End kubeflow example
  • Present an End-to-End Sequence-to-Sequence model

By the end of this tutorial, you should learn how to:

  • Setup a Kubeflow cluster on an existing Kubernetes deployment
  • Spawn up a Jupyter Notebook on the cluster
  • Spawn up a shared-persistent storage across the cluster to store large datasets
  • Train a Sequence-to-Sequence model using TensorFlow and GPUs on the cluster
  • Serve the model using Seldon Core
  • Query the model from a simple front-end application

Steps:

  1. Setup a Kubeflow cluster
  2. Training the model. You can train the model using any of the following methods using Jupyter Notebook or using TFJob:
  3. Serving the model
  4. Querying the model
  5. Teardown