examples/object_detection/ks-app/components/export-tf-graph-job.jsonnet

52 lines
1.5 KiB
Plaintext

local env = std.extVar("__ksonnet/environments");
local params = std.extVar("__ksonnet/params").components["export-tf-graph-job"];
local k = import "k.libsonnet";
local obj_detection = import "obj-detection.libsonnet";
local namespace = env.namespace;
local jobName = params.name;
local pvc = params.pvc;
local mountPath = params.mountPath;
local image = params.image;
local command = params.command;
local args = params.args;
local exportTfGraphJob = {
apiVersion: "batch/v1",
kind: "Job",
metadata: {
name: params.name,
namespace: env.namespace,
},
spec: {
template: {
spec: {
containers: [{
name: "export-graph",
image: params.image,
imagePullPolicy: "IfNotPresent",
command: ['python', '/models/research/object_detection/export_inference_graph.py'],
args: ['--input_type=' + params.inputType,
'--pipeline_config_path=' + params.pipelineConfigPath,
'--trained_checkpoint_prefix=' + params.trainedCheckpoint,
'--output_directory=' + params.outputDir],
volumeMounts: [{
mountPath: params.mountPath,
name: "pets-data",
},],
},],
volumes: [{
name: "pets-data",
persistentVolumeClaim: {
claimName: params.pvc,
},
},],
restartPolicy: "Never",
},
},
backoffLimit: 4,
},
};
std.prune(k.core.v1.list.new([exportTfGraphJob,]))