mirror of https://github.com/kubeflow/examples.git
178 lines
6.5 KiB
Python
178 lines
6.5 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""This showcases how simple it is to build image classification networks.
|
|
|
|
It follows description from this TensorFlow tutorial:
|
|
https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
# Configure model options
|
|
# TODO(jlewi): Why environment variables and not command line arguments?
|
|
TF_DATA_DIR = os.getenv("TF_DATA_DIR", "/tmp/data/")
|
|
TF_MODEL_DIR = os.getenv("TF_MODEL_DIR", None)
|
|
TF_EXPORT_DIR = os.getenv("TF_EXPORT_DIR", "mnist/")
|
|
TF_MODEL_TYPE = os.getenv("TF_MODEL_TYPE", "CNN")
|
|
TF_TRAIN_STEPS = int(os.getenv("TF_TRAIN_STEPS", 200))
|
|
TF_BATCH_SIZE = int(os.getenv("TF_BATCH_SIZE", 100))
|
|
TF_LEARNING_RATE = float(os.getenv("TF_LEARNING_RATE", 0.01))
|
|
|
|
N_DIGITS = 10 # Number of digits.
|
|
X_FEATURE = 'x' # Name of the input feature.
|
|
|
|
|
|
def conv_model(features, labels, mode):
|
|
"""2-layer convolution model."""
|
|
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
|
|
# image width and height final dimension being the number of color channels.
|
|
feature = tf.reshape(features[X_FEATURE], [-1, 28, 28, 1])
|
|
|
|
# First conv layer will compute 32 features for each 5x5 patch
|
|
with tf.variable_scope('conv_layer1'):
|
|
h_conv1 = tf.layers.conv2d(
|
|
feature,
|
|
filters=32,
|
|
kernel_size=[5, 5],
|
|
padding='same',
|
|
activation=tf.nn.relu)
|
|
h_pool1 = tf.layers.max_pooling2d(
|
|
h_conv1, pool_size=2, strides=2, padding='same')
|
|
|
|
# Second conv layer will compute 64 features for each 5x5 patch.
|
|
with tf.variable_scope('conv_layer2'):
|
|
h_conv2 = tf.layers.conv2d(
|
|
h_pool1,
|
|
filters=64,
|
|
kernel_size=[5, 5],
|
|
padding='same',
|
|
activation=tf.nn.relu)
|
|
h_pool2 = tf.layers.max_pooling2d(
|
|
h_conv2, pool_size=2, strides=2, padding='same')
|
|
# reshape tensor into a batch of vectors
|
|
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
|
|
|
|
# Densely connected layer with 1024 neurons.
|
|
h_fc1 = tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu)
|
|
h_fc1 = tf.layers.dropout(
|
|
h_fc1,
|
|
rate=0.5,
|
|
training=(mode == tf.estimator.ModeKeys.TRAIN))
|
|
|
|
# Compute logits (1 per class) and compute loss.
|
|
logits = tf.layers.dense(h_fc1, N_DIGITS, activation=None)
|
|
predict = tf.nn.softmax(logits)
|
|
classes = tf.cast(tf.argmax(predict, 1), tf.uint8)
|
|
|
|
# Compute predictions.
|
|
predicted_classes = tf.argmax(logits, 1)
|
|
if mode == tf.estimator.ModeKeys.PREDICT:
|
|
predictions = {
|
|
'class': predicted_classes,
|
|
'prob': tf.nn.softmax(logits)
|
|
}
|
|
return tf.estimator.EstimatorSpec(mode, predictions=predictions,
|
|
export_outputs={'classes':
|
|
tf.estimator.export.PredictOutput({"predictions": predict,
|
|
"classes": classes})})
|
|
|
|
# Compute loss.
|
|
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
|
|
|
|
# Create training op.
|
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
optimizer = tf.train.GradientDescentOptimizer(
|
|
learning_rate=TF_LEARNING_RATE)
|
|
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
|
|
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
|
|
|
|
# Compute evaluation metrics.
|
|
eval_metric_ops = {
|
|
'accuracy': tf.metrics.accuracy(
|
|
labels=labels, predictions=predicted_classes)
|
|
}
|
|
return tf.estimator.EstimatorSpec(
|
|
mode, loss=loss, eval_metric_ops=eval_metric_ops)
|
|
|
|
|
|
def cnn_serving_input_receiver_fn():
|
|
inputs = {X_FEATURE: tf.placeholder(tf.float32, [None, 28, 28])}
|
|
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
|
|
|
|
|
|
def linear_serving_input_receiver_fn():
|
|
inputs = {X_FEATURE: tf.placeholder(tf.float32, (784,))}
|
|
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
|
|
|
|
|
|
def main(_):
|
|
tf.logging.set_verbosity(tf.logging.INFO)
|
|
|
|
# Download and load MNIST dataset.
|
|
mnist = tf.contrib.learn.datasets.DATASETS['mnist'](TF_DATA_DIR)
|
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
|
x={X_FEATURE: mnist.train.images},
|
|
y=mnist.train.labels.astype(np.int32),
|
|
batch_size=TF_BATCH_SIZE,
|
|
num_epochs=None,
|
|
shuffle=True)
|
|
test_input_fn = tf.estimator.inputs.numpy_input_fn(
|
|
x={X_FEATURE: mnist.train.images},
|
|
y=mnist.train.labels.astype(np.int32),
|
|
num_epochs=1,
|
|
shuffle=False)
|
|
|
|
training_config = tf.estimator.RunConfig(
|
|
model_dir=TF_MODEL_DIR, save_summary_steps=100, save_checkpoints_steps=1000)
|
|
|
|
if TF_MODEL_TYPE == "LINEAR":
|
|
# Linear classifier.
|
|
feature_columns = [
|
|
tf.feature_column.numeric_column(
|
|
X_FEATURE, shape=mnist.train.images.shape[1:])]
|
|
classifier = tf.estimator.LinearClassifier(
|
|
feature_columns=feature_columns, n_classes=N_DIGITS,
|
|
model_dir=TF_MODEL_DIR, config=training_config)
|
|
export_final = tf.estimator.FinalExporter(
|
|
TF_EXPORT_DIR, serving_input_receiver_fn=cnn_serving_input_receiver_fn)
|
|
|
|
elif TF_MODEL_TYPE == "CNN":
|
|
# Convolutional network
|
|
classifier = tf.estimator.Estimator(
|
|
model_fn=conv_model, model_dir=TF_MODEL_DIR, config=training_config)
|
|
export_final = tf.estimator.FinalExporter(
|
|
TF_EXPORT_DIR, serving_input_receiver_fn=cnn_serving_input_receiver_fn)
|
|
else:
|
|
print("No such model type: %s" % TF_MODEL_TYPE)
|
|
sys.exit(1)
|
|
|
|
train_spec = tf.estimator.TrainSpec(
|
|
input_fn=train_input_fn, max_steps=TF_TRAIN_STEPS)
|
|
eval_spec = tf.estimator.EvalSpec(input_fn=test_input_fn,
|
|
steps=1,
|
|
exporters=export_final,
|
|
throttle_secs=1,
|
|
start_delay_secs=1)
|
|
tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
|
|
|
|
if __name__ == '__main__':
|
|
tf.app.run()
|