fix(README): Update instructions to only use kustomize (#1455)
This commit is contained in:
parent
b77e6f38d5
commit
a9d7df96d2
|
|
@ -73,17 +73,12 @@ To install the standalone Kubeflow Pipelines V1 with Tekton , run the following
|
|||
-p '{"data":{"default-timeout-minutes": "0"}}'
|
||||
```
|
||||
|
||||
3. Install Kubeflow Pipelines with Tekton backend (`kfp-tekton`) `v1.9.2` [custom resource definitions](https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/)(CRDs).
|
||||
3. Install Kubeflow Pipelines with Tekton backend (`kfp-tekton`) `v1.9.2` deployment
|
||||
```shell
|
||||
kubectl apply --selector kubeflow/crd-install=true -f https://raw.githubusercontent.com/kubeflow/kfp-tekton/master/install/v1.9.2/kfp-tekton.yaml
|
||||
kubectl apply -k https://github.com/kubeflow/kfp-tekton//manifests/kustomize/env/kfp-template\?ref\=v1.9.2
|
||||
```
|
||||
|
||||
4. Install Kubeflow Pipelines with Tekton backend (`kfp-tekton`) `v1.9.2` deployment
|
||||
```shell
|
||||
kubectl apply -f https://raw.githubusercontent.com/kubeflow/kfp-tekton/master/install/v1.9.2/kfp-tekton.yaml
|
||||
```
|
||||
|
||||
5. Then, if you want to expose the Kubeflow Pipelines endpoint outside the cluster, run the following commands:
|
||||
4. Then, if you want to expose the Kubeflow Pipelines endpoint outside the cluster, run the following commands:
|
||||
```shell
|
||||
kubectl patch svc ml-pipeline-ui -n kubeflow -p '{"spec": {"type": "LoadBalancer"}}'
|
||||
```
|
||||
|
|
@ -93,13 +88,13 @@ To install the standalone Kubeflow Pipelines V1 with Tekton , run the following
|
|||
kubectl get svc ml-pipeline-ui -n kubeflow -o jsonpath='{.status.loadBalancer.ingress[0].ip}'
|
||||
```
|
||||
|
||||
6. (GPU worker nodes only) If your Kubernetes cluster has a mixture of CPU and GPU worker nodes, it's recommended to disable the Tekton default affinity assistant so that Tekton won't schedule too many CPU workloads on the GPU nodes.
|
||||
5. (GPU worker nodes only) If your Kubernetes cluster has a mixture of CPU and GPU worker nodes, it's recommended to disable the Tekton default affinity assistant so that Tekton won't schedule too many CPU workloads on the GPU nodes.
|
||||
```shell
|
||||
kubectl patch cm feature-flags -n tekton-pipelines \
|
||||
-p '{"data":{"disable-affinity-assistant": "true"}}'
|
||||
```
|
||||
|
||||
7. (OpenShift only) If you are running the standalone KFP-Tekton on OpenShift, apply the necessary security context constraint below
|
||||
6. (OpenShift only) If you are running the standalone KFP-Tekton on OpenShift, apply the necessary security context constraint below
|
||||
```shell
|
||||
curl -L https://raw.githubusercontent.com/kubeflow/kfp-tekton/master/install/v1.9.2/kfp-tekton.yaml | yq 'del(.spec.template.spec.containers[].securityContext.runAsUser, .spec.template.spec.containers[].securityContext.runAsGroup)' | oc apply -f -
|
||||
oc apply -k https://github.com/kubeflow/kfp-tekton//manifests/kustomize/third-party/openshift/standalone
|
||||
|
|
|
|||
Loading…
Reference in New Issue