Kubeflow Pipelines on Tekton
Go to file
Tommy Li 93f726f60e
chore(docs): Move loop to custom feature since it's not Tekton native (#1067)
2022-10-28 17:19:47 +00:00
.github feat(test): add backend integration test (#956) 2022-05-26 15:06:05 +00:00
.tekton test: Add a test case for the validation (#1051) 2022-09-30 20:33:55 +00:00
api Kfp 1.8.0 api and frontend rebase (#862) 2022-03-03 00:58:28 +00:00
backend feat(backend): add new annotation flags to enable artifact tracking at pipeline and task level (#1065) 2022-10-28 17:10:47 +00:00
components Remove unsynced components (#840) 2022-01-31 18:08:32 +00:00
docs KFP 1.7.0 Rebase (#713) 2021-08-30 15:02:25 -07:00
frontend feature(backend): support embedded-status: minimal (#976) 2022-06-16 20:15:42 +00:00
guides chore(release): add 1.4.0 release changes (#1063) 2022-10-26 21:12:18 +00:00
hack feat(backend): update go version and license files (#949) 2022-05-24 21:13:33 +00:00
images Add Custom Task Docs and Usage (#588) 2021-05-24 13:15:08 -07:00
install chore(release): add 1.4.0 release changes (#1063) 2022-10-26 21:12:18 +00:00
manifests chore(release): add 1.4.0 release changes (#1063) 2022-10-26 21:12:18 +00:00
samples feat(backend): add new annotation flags to enable artifact tracking at pipeline and task level (#1065) 2022-10-28 17:10:47 +00:00
scripts test: Add a test case for the validation (#1051) 2022-09-30 20:33:55 +00:00
sdk chore(docs): Move loop to custom feature since it's not Tekton native (#1067) 2022-10-28 17:19:47 +00:00
tekton-catalog fix(pipelineloop): caching should include the params for making caching key. (#1056) 2022-10-24 21:39:12 +00:00
tools KFP 1.7.0 Rebase (#713) 2021-08-30 15:02:25 -07:00
v2 KFP 1.8.4 Rebase (#1024) 2022-08-11 16:39:03 +00:00
.cloudbuild.yaml KFP 1.8.4 Rebase (#1024) 2022-08-11 16:39:03 +00:00
.dockerignore KFP 1.7.0 Rebase (#713) 2021-08-30 15:02:25 -07:00
.gitattributes Import KFP backend kubeflow/pipelines (#192) 2020-06-22 21:09:43 -07:00
.gitignore Kfp 1.8.0 api and frontend rebase (#862) 2022-03-03 00:58:28 +00:00
.kfp-rebase-version Update kfp-tekton release to 1.3.1 (#1033) 2022-08-22 22:07:25 +00:00
.pylintrc KFP 1.3.0 Rebase (#423) 2021-01-19 13:43:59 -08:00
.readthedocs.yml KFP 1.7.0 Rebase (#713) 2021-08-30 15:02:25 -07:00
.release.cloudbuild.yaml KFP 1.8.4 Rebase (#1024) 2022-08-11 16:39:03 +00:00
.style.yapf Kfp 1.8.0 api and frontend rebase (#862) 2022-03-03 00:58:28 +00:00
.travis.yml Migrate Travis tests to Github Actions (#619) 2021-06-18 12:00:14 -07:00
CONTRIBUTING.md KFP 1.4.0 Rebase (#481) 2021-03-01 10:21:26 -08:00
LICENSE Initial commit 2019-10-23 13:33:02 -07:00
Makefile chore(release): add 1.4.0 release changes (#1063) 2022-10-26 21:12:18 +00:00
OWNERS chore(OWNERS): Remove Animesh as reviewer (#1064) 2022-10-26 21:13:20 +00:00
README.md fix(backend): Update Tekton to 0.38.4 (#1049) 2022-09-28 23:30:20 +00:00
VERSION chore(release): add 1.4.0 release changes (#1063) 2022-10-26 21:12:18 +00:00
go-licenses.yaml upgrade tekton to 0.36.0 (#938) 2022-06-03 21:57:26 +00:00
go.mod fix(backend): Update Tekton to 0.38.4 (#1049) 2022-09-28 23:30:20 +00:00
go.sum fix(backend): Update Tekton to 0.38.4 (#1049) 2022-09-28 23:30:20 +00:00

README.md

Kubeflow Pipelines on Tekton

Project bringing Kubeflow Pipelines and Tekton together. The project is driven according to this design doc. The current code allows you run Kubeflow Pipelines with Tekton backend end to end.

  • Create your Pipeline using Kubeflow Pipelines DSL, and compile it to Tekton YAML.
  • Upload the compiled Tekton YAML to KFP engine (API and UI), and run end to end with logging and artifacts tracking enabled.

For more details about the project please follow this detailed blog post. For latest information and supported offerings, please follow the Kubeflow Pipelines on Tekton 1.0 release blog. Additionally, look at these slides as well as this deep dive presentation for demos.

Note: If you are interested in a sister project built on top of Kubeflow Pipelines with Tekton, please try Machine Learning eXchange (MLX), Data and AI Assets Catalog and Execution Engine. It introduces a 'Component Registry' for Kubeflow Pipelines, amongst other things.

Architecture

We are currently using Kubeflow Pipelines 1.8.4 and Tekton >= 0.38.4 for this project.

kfp-tekton

Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning (ML) workflows. More architectural details about the Kubeflow Pipelines can be found on the Kubeflow website.

The Tekton Pipelines project provides Kubernetes-style resources for declaring CI/CD-style pipelines. Tekton introduces several Custom Resource Definitions(CRDs) including Task, Pipeline, TaskRun, and PipelineRun. A PipelineRun represents a single running instance of a Pipeline and is responsible for creating a Pod for each of its Tasks and as many containers within each Pod as it has Steps. Please look for more details in the Tekton repo.

Get Started using Kubeflow Pipelines on Tekton

Install Kubeflow Pipelines with Tekton backend

KFP Tekton Pipelines User Guide

Use KFP Tekton SDK

Run Samples

Available KFP DSL Features

Tekton Specific Features

Development Guides

Backend Developer Guide

SDK Developer Guide

Compilation Tests Status Report

Design Guides

Design Doc

KFP, Argo and Tekton Features Comparison

Community

Kubeflow Slack

CD Foundation MLOps Sig.

Instructions to join

References

Kubeflow and TFX Pipelines

Kubeflow and TFX Pipelines talk at Tensorflow World