bump version to 0.2.4 and tiny BTW doc fix (#3115)

* update guide for cluster size

* bump version to 0.2.4

* remove ALPHA

* update sample source link

* fix snapshot

* done

Co-authored-by: renmingu <40223865+renmingu@users.noreply.github.com>
This commit is contained in:
Renmin 2020-02-19 19:54:26 +08:00 committed by GitHub
parent 18d07f6fa0
commit 23e9d3786d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 39 additions and 31 deletions

View File

@ -6,7 +6,7 @@
},
{
"name": "[Demo] TFX - Taxi Tip Prediction Model Trainer",
"description": "[source code](https://console.cloud.google.com/mlengine/notebooks/deploy-notebook?q=download_url%3Dhttps%253A%252F%252Fraw.githubusercontent.com%252Fkubeflow%252Fpipelines%252Fmaster%252Fsamples%252Fcore%252Fparameterized_tfx_oss%252Ftaxi_pipeline_notebook.ipynb) [GCP Permission requirements](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/parameterized_tfx_oss#permission). Example pipeline that does classification with model analysis based on a public tax cab dataset.",
"description": "[source code](https://github.com/kubeflow/pipelines/tree/master/samples/core/parameterized_tfx_oss) [GCP Permission requirements](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/parameterized_tfx_oss#permission). Example pipeline that does classification with model analysis based on a public tax cab dataset.",
"file": "/samples/core/parameterized_tfx_oss/parameterized_tfx_oss.py.yaml"
},
{

View File

@ -14,18 +14,18 @@
* limitations under the License.
*/
import * as React from 'react';
import Buttons from '../lib/Buttons';
import { Page } from './Page';
import { ToolbarProps } from '../components/Toolbar';
import Markdown from 'markdown-to-jsx';
import * as React from 'react';
import { classes, cssRaw } from 'typestyle';
import { ApiFilter, PredicateOp } from '../apis/filter/api';
import { AutoLink } from '../atoms/ExternalLink';
import { cssRaw, classes } from 'typestyle';
import { RoutePageFactory } from '../components/Router';
import { ToolbarProps } from '../components/Toolbar';
import SAMPLE_CONFIG from '../config/sample_config_from_backend.json';
import { commonCss, padding } from '../Css';
import { Apis } from '../lib/Apis';
import { ApiFilter, PredicateOp } from '../apis/filter/api';
import { RoutePageFactory } from '../components/Router';
import SAMPLE_CONFIG from '../config/sample_config_from_backend.json';
import Buttons from '../lib/Buttons';
import { Page } from './Page';
const DEMO_PIPELINES: string[] = SAMPLE_CONFIG.slice(0, 4);
const DEMO_PIPELINES_ID_MAP = {
@ -50,7 +50,7 @@ const PAGE_CONTENT_MD = ({
## Build your own pipeline
Build an end-to-end ML pipeline with TensorFlow Extended (TFX) [**Start Here!**](https://console.cloud.google.com/mlengine/notebooks/deploy-notebook?q=download_url%3Dhttps%253A%252F%252Fraw.githubusercontent.com%252Ftensorflow%252Ftfx%252Fmaster%252Fdocs%252Ftutorials%252Ftfx%252Ftemplate.ipynb) (Alpha)
Build an end-to-end ML pipeline with TensorFlow Extended (TFX) [**Start Here!**](https://console.cloud.google.com/mlengine/notebooks/deploy-notebook?q=download_url%3Dhttps%253A%252F%252Fraw.githubusercontent.com%252Ftensorflow%252Ftfx%252Fmaster%252Fdocs%252Ftutorials%252Ftfx%252Ftemplate.ipynb)
<br/>

View File

@ -5,7 +5,7 @@ exports[`GettingStarted page fallbacks to show pipeline list page if request fai
- First value
+ Second value
@@ -70,11 +70,13 @@
@@ -69,11 +69,13 @@
>
</li>
</ul>
@ -46,7 +46,6 @@ exports[`GettingStarted page initially renders documentation 1`] = `
Start Here!
</strong>
</a>
(Alpha)
</p>
<br />
<h2
@ -260,7 +259,7 @@ exports[`GettingStarted page renders documentation with pipeline deep link after
- First value
+ Second value
@@ -17,11 +17,13 @@
@@ -16,11 +16,13 @@
<h2 id=\\"demonstrations-and-tutorials\\">Demonstrations and Tutorials</h2>
<p>This section contains demo and tutorial pipelines.</p>
<p><strong>Demos</strong> - Try an end-to-end demonstration pipeline.</p>
@ -275,7 +274,7 @@ exports[`GettingStarted page renders documentation with pipeline deep link after
Classification pipeline with model analysis, based on a public
BigQuery dataset of taxicab trips. Learn how to
<a
@@ -33,11 +35,13 @@
@@ -32,11 +34,13 @@
>
</li>
</ul>
@ -290,7 +289,7 @@ exports[`GettingStarted page renders documentation with pipeline deep link after
An example of end-to-end distributed training for an XGBoost model.
<a
href=\\"https://github.com/kubeflow/pipelines/tree/master/samples/core/xgboost_training_cm\\"
@@ -55,11 +59,13 @@
@@ -54,11 +58,13 @@
<strong>Tutorials</strong> - Learn pipeline concepts by following a
tutorial.
</p>
@ -305,7 +304,7 @@ exports[`GettingStarted page renders documentation with pipeline deep link after
Shows how to pass data between python components.
<a
href=\\"https://github.com/kubeflow/pipelines/tree/master/samples/tutorials/Data%20passing%20in%20python%20components\\"
@@ -70,11 +76,13 @@
@@ -69,11 +75,13 @@
>
</li>
</ul>

View File

@ -12,7 +12,7 @@ metadata:
spec:
descriptor:
type: Kubeflow Pipelines
version: '0.2.3'
version: '0.2.4'
description: |-
Reusable end-to-end ML workflow
maintainers:

View File

@ -14,7 +14,16 @@ Once you have deployed Kubeflow Pipelines instances, you can view and manage the
## Cluster
You can deploy Kubeflow Pipelines to a new cluster or an existing cluster. New clusters aren't customizable, so if you need that, you should use the [Google Kubernetes Engine](https://console.cloud.google.com/kubernetes/list) to create a cluster that meets your requirements and then deploy to that.
You can deploy Kubeflow Pipelines to a new cluster or an existing cluster. New clusters aren't customizable, so if you need that, you should use the [Google Kubernetes Engine](https://console.cloud.google.com/kubernetes/list) to create a cluster that meets your requirements and then deploy to that. The required cluster profile is 3 nodes with 2 CPUs. You also can create the cluster via gcloud.
Here is a sample which will create a cluster with 3x2 CPUs and can access all GCP APIs without setting up secrets.
```
gcloud container clusters create $CLUSTER_NAME \
--zone $ZONE \
--machine-type n1-standard-2 \
--scopes cloud-platform
```
You can only deploy one Kubeflow Pipelines into a given cluster.

View File

@ -1,10 +1,10 @@
x-google-marketplace:
schemaVersion: v2
applicationApiVersion: v1beta1
publishedVersion: '0.2.3'
publishedVersion: '0.2.4'
publishedVersionMetadata:
releaseNote: >-
Based on 0.2.3 version.
Based on 0.2.4 version.
releaseTypes:
- Feature
recommended: false

View File

@ -6,7 +6,7 @@ This folder contains Kubeflow Pipelines Kustomize manifests for a light weight d
Deploy latest version of Kubeflow Pipelines
```
export PIPELINE_VERSION=0.2.3
export PIPELINE_VERSION=0.2.4
kubectl apply -f https://storage.googleapis.com/ml-pipeline/pipeline-lite/$PIPELINE_VERSION/crd.yaml
kubectl wait --for condition=established --timeout=60s crd/applications.app.k8s.io
kubectl apply -f https://storage.googleapis.com/ml-pipeline/pipeline-lite/$PIPELINE_VERSION/namespaced-install.yaml

View File

@ -13,18 +13,18 @@ resources:
images:
- name: gcr.io/ml-pipeline/api-server
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/persistenceagent
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/scheduledworkflow
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/frontend
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/viewer-crd-controller
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/inverse-proxy-agent
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/visualization-server
newTag: 0.2.3
newTag: 0.2.4
- name: gcr.io/ml-pipeline/metadata-writer
newTag: 0.2.3
newTag: 0.2.4

View File

@ -12,7 +12,7 @@ spec:
matchLabels:
application-crd-id: kubeflow-pipelines
descriptor:
version: 0.2.3
version: 0.2.4
type: Kubeflow Pipelines
description: |-
Reusable end-to-end ML workflow

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = '0.2.3'
__version__ = '0.2.4'
from . import components
from . import containers