Refactor to match new samples folder structure (#1741)
This commit is contained in:
parent
dd59bc2597
commit
351f4562a4
|
@ -53,7 +53,7 @@ active_learning_model_arn | ARN of the resulting active learning model
|
|||
|
||||
# Samples
|
||||
## Used in a pipeline with workteam creation and training
|
||||
Mini image classification demo: [Demo](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/ground_truth_pipeline_demo/)
|
||||
Mini image classification demo: [Demo](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/aws-samples/ground_truth_pipeline_demo/)
|
||||
|
||||
# References
|
||||
* [Ground Truth documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html)
|
||||
|
|
|
@ -64,9 +64,9 @@ training_image | The registry path of the Docker image that contains the trainin
|
|||
|
||||
# Samples
|
||||
## On its own
|
||||
K-Means algorithm tuning on MNIST dataset: [pipeline](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/mnist-kmeans-sagemaker/kmeans-hpo-pipeline.py)
|
||||
K-Means algorithm tuning on MNIST dataset: [pipeline](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/aws-samples/mnist-kmeans-sagemaker/kmeans-hpo-pipeline.py)
|
||||
|
||||
Follow the steps as in the [README](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/mnist-kmeans-sagemaker/README.md) with some modification:
|
||||
Follow the steps as in the [README](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/aws-samples/mnist-kmeans-sagemaker/README.md) with some modification:
|
||||
1. Get and store data in S3 buckets
|
||||
2. Prepare an IAM roles with permissions to run SageMaker jobs
|
||||
3. Add 'aws-secret' to your kubeflow namespace
|
||||
|
@ -78,7 +78,7 @@ dsl-compile --py kmeans-hpo-pipeline.py --output kmeans-hpo-pipeline.tar.gz
|
|||
6. Once the pipeline completes, you can see the outputs under 'Output parameters' in the HPO component's Input/Output section.
|
||||
|
||||
## Integrated into a pipeline
|
||||
MNIST Classification using K-Means pipeline: [Pipeline](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/mnist-kmeans-sagemaker/mnist-classification-pipeline.py) | [Steps](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/mnist-kmeans-sagemaker/README.md)
|
||||
MNIST Classification using K-Means pipeline: [Pipeline](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/aws-samples/mnist-kmeans-sagemaker/mnist-classification-pipeline.py) | [Steps](https://github.com/kubeflow/pipelines/blob/master/samples/contrib/aws-samples/mnist-kmeans-sagemaker/README.md)
|
||||
|
||||
# Resources
|
||||
* [Using Amazon built-in algorithms](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
|
||||
|
|
|
@ -38,7 +38,7 @@ workteam_arn | ARN of the workteam
|
|||
|
||||
# Samples
|
||||
## In a pipeline with Ground Truth and training
|
||||
Mini image classification: [Demo](https://github.com/kubeflow/pipelines/blob/master/samples/aws-samples/ground_truth_pipeline_demo/)
|
||||
Mini image classification: [Demo](https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples/ground_truth_pipeline_demo)
|
||||
|
||||
# References
|
||||
* [Managing a private workforce](https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management-private.html)
|
||||
|
|
|
@ -13,7 +13,7 @@ Run the following to download `openimgs-annotations.csv`:
|
|||
```bash
|
||||
wget https://storage.googleapis.com/openimages/2018_04/test/test-annotations-human-imagelabels-boxable.csv -O openimgs-annotations.csv
|
||||
```
|
||||
Create a s3 bucket and run [this python script](https://github.com/kubeflow/pipelines/tree/master/samples/aws-samples/ground_truth_pipeline_demo/prep_inputs.py) to get the images and generate `train.manifest`, `validation.manifest`, `class_labels.json`, and `instuctions.template`.
|
||||
Create a s3 bucket and run [this python script](https://github.com/kubeflow/pipelines/tree/master/samples/contrib/aws-samples/ground_truth_pipeline_demo/prep_inputs.py) to get the images and generate `train.manifest`, `validation.manifest`, `class_labels.json`, and `instuctions.template`.
|
||||
|
||||
|
||||
## Amazon Cognito user groups
|
||||
|
|
|
@ -5,9 +5,9 @@ from kfp import components
|
|||
from kfp import dsl
|
||||
from kfp.aws import use_aws_secret
|
||||
|
||||
sagemaker_workteam_op = components.load_component_from_file('../../../components/aws/sagemaker/workteam/component.yaml')
|
||||
sagemaker_gt_op = components.load_component_from_file('../../../components/aws/sagemaker/ground_truth/component.yaml')
|
||||
sagemaker_train_op = components.load_component_from_file('../../../components/aws/sagemaker/train/component.yaml')
|
||||
sagemaker_workteam_op = components.load_component_from_file('../../../../components/aws/sagemaker/workteam/component.yaml')
|
||||
sagemaker_gt_op = components.load_component_from_file('../../../../components/aws/sagemaker/ground_truth/component.yaml')
|
||||
sagemaker_train_op = components.load_component_from_file('../../../../components/aws/sagemaker/train/component.yaml')
|
||||
|
||||
@dsl.pipeline(
|
||||
name='Ground Truth image classification test pipeline',
|
||||
|
|
|
@ -5,7 +5,7 @@ from kfp import components
|
|||
from kfp import dsl
|
||||
from kfp.aws import use_aws_secret
|
||||
|
||||
sagemaker_hpo_op = components.load_component_from_file('../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
|
||||
sagemaker_hpo_op = components.load_component_from_file('../../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
|
||||
|
||||
@dsl.pipeline(
|
||||
name='MNIST HPO test pipeline',
|
||||
|
|
|
@ -5,11 +5,11 @@ from kfp import components
|
|||
from kfp import dsl
|
||||
from kfp.aws import use_aws_secret
|
||||
|
||||
sagemaker_hpo_op = components.load_component_from_file('../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
|
||||
sagemaker_train_op = components.load_component_from_file('../../../components/aws/sagemaker/train/component.yaml')
|
||||
sagemaker_model_op = components.load_component_from_file('../../../components/aws/sagemaker/model/component.yaml')
|
||||
sagemaker_deploy_op = components.load_component_from_file('../../../components/aws/sagemaker/deploy/component.yaml')
|
||||
sagemaker_batch_transform_op = components.load_component_from_file('../../../components/aws/sagemaker/batch_transform/component.yaml')
|
||||
sagemaker_hpo_op = components.load_component_from_file('../../../../components/aws/sagemaker/hyperparameter_tuning/component.yaml')
|
||||
sagemaker_train_op = components.load_component_from_file('../../../../components/aws/sagemaker/train/component.yaml')
|
||||
sagemaker_model_op = components.load_component_from_file('../../../../components/aws/sagemaker/model/component.yaml')
|
||||
sagemaker_deploy_op = components.load_component_from_file('../../../../components/aws/sagemaker/deploy/component.yaml')
|
||||
sagemaker_batch_transform_op = components.load_component_from_file('../../../../components/aws/sagemaker/batch_transform/component.yaml')
|
||||
|
||||
@dsl.pipeline(
|
||||
name='MNIST Classification pipeline',
|
||||
|
|
Loading…
Reference in New Issue