Fixing volume size default value from 1 to 30 (#3598)
This commit is contained in:
		
							parent
							
								
									f214a39420
								
							
						
					
					
						commit
						45bc582374
					
				| 
						 | 
				
			
			@ -30,7 +30,7 @@ output_location | The Amazon S3 path where you want Amazon SageMaker to store th
 | 
			
		|||
output_encryption_key | The AWS KMS key that Amazon SageMaker uses to encrypt the model artifacts | Yes | Yes | String | | |
 | 
			
		||||
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge | ml.m4.xlarge |
 | 
			
		||||
instance_count | The number of ML compute instances to use in each training job | Yes | Yes | Int | ≥ 1 | 1 |
 | 
			
		||||
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Yes | Int | ≥ 1 | 1 |
 | 
			
		||||
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Yes | Int | ≥ 1 | 30 |
 | 
			
		||||
max_num_jobs | The maximum number of training jobs that a hyperparameter tuning job can launch | No | No | Int | [1, 500] | |
 | 
			
		||||
max_parallel_jobs | The maximum number of concurrent training jobs that a hyperparameter tuning job can launch | No | No | Int | [1, 10] | |
 | 
			
		||||
max_run_time | The maximum run time in seconds per training job | Yes | Yes | Int | ≤ 432000 (5 days) | 86400 (1 day) |
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -58,7 +58,7 @@ inputs:
 | 
			
		|||
    default: '1'
 | 
			
		||||
  - name: volume_size
 | 
			
		||||
    description: 'The size of the ML storage volume that you want to provision.'
 | 
			
		||||
    default: '1'
 | 
			
		||||
    default: '30'
 | 
			
		||||
  - name: max_num_jobs
 | 
			
		||||
    description: 'The maximum number of training jobs that a hyperparameter tuning job can launch.'
 | 
			
		||||
  - name: max_parallel_jobs
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -23,7 +23,7 @@ hyperparameters  | Hyperparameters for the selected algorithm | No | Dict | [Dep
 | 
			
		|||
channels | A list of dicts specifying the input channels (at least one); refer to [documentation](https://github.com/awsdocs/amazon-sagemaker-developer-guide/blob/master/doc_source/API_Channel.md) for parameters | No | No | List of Dicts | | |
 | 
			
		||||
instance_type | The ML compute instance type | Yes | No | String | ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge | ml.m4.xlarge |
 | 
			
		||||
instance_count | The number of ML compute instances to use in each training job | Yes | Int | ≥ 1 | 1 |
 | 
			
		||||
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Int | ≥ 1 | 1 |
 | 
			
		||||
volume_size | The size of the ML storage volume that you want to provision in GB | Yes | Int | ≥ 1 | 30 |
 | 
			
		||||
resource_encryption_key | The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) | Yes | String | | |
 | 
			
		||||
max_run_time | The maximum run time in seconds per training job | Yes | Int | ≤ 432000 (5 days) | 86400 (1 day) |
 | 
			
		||||
model_artifact_path | | No | String | | |
 | 
			
		||||
| 
						 | 
				
			
			@ -45,4 +45,4 @@ Stores the Model in the s3 bucket you specified
 | 
			
		|||
Simple example pipeline with only Train component : [simple_train_pipeline](https://github.com/kubeflow/pipelines/tree/documents/samples/contrib/aws-samples/simple_train_pipeline)
 | 
			
		||||
 | 
			
		||||
# Resources
 | 
			
		||||
* [Using Amazon built-in algorithms](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
 | 
			
		||||
* [Using Amazon built-in algorithms](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -34,7 +34,7 @@ inputs:
 | 
			
		|||
    default: '1'
 | 
			
		||||
  - name: volume_size
 | 
			
		||||
    description: 'The size of the ML storage volume that you want to provision.'
 | 
			
		||||
    default: '1'
 | 
			
		||||
    default: '30'
 | 
			
		||||
  - name: resource_encryption_key
 | 
			
		||||
    description: 'The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).'
 | 
			
		||||
    default: ''
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue