Changing the default volume size to 30 (#3792)
This commit is contained in:
parent
a764405ebc
commit
6e2a55cf84
|
@ -41,7 +41,7 @@ def create_parser():
|
|||
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
|
||||
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
|
||||
parser.add_argument('--instance_count', type=int, required=False, help='The number of ML compute instances to use in each training job.', default=1)
|
||||
parser.add_argument('--volume_size', type=int, required=False, help='The size of the ML storage volume that you want to provision.', default=1)
|
||||
parser.add_argument('--volume_size', type=int, required=False, help='The size of the ML storage volume that you want to provision.', default=30)
|
||||
parser.add_argument('--max_num_jobs', type=int, required=True, help='The maximum number of training jobs that a hyperparameter tuning job can launch.')
|
||||
parser.add_argument('--max_parallel_jobs', type=int, required=True, help='The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.')
|
||||
parser.add_argument('--max_run_time', type=int, required=False, help='The maximum run time in seconds per training job.', default=86400)
|
||||
|
|
|
@ -32,7 +32,7 @@ def create_parser():
|
|||
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
|
||||
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str, help='The ML compute instance type.', default='ml.m4.xlarge')
|
||||
parser.add_argument('--instance_count', required=True, type=int, help='The registry path of the Docker image that contains the training algorithm.', default=1)
|
||||
parser.add_argument('--volume_size', type=int, required=True, help='The size of the ML storage volume that you want to provision.', default=1)
|
||||
parser.add_argument('--volume_size', type=int, required=True, help='The size of the ML storage volume that you want to provision.', default=30)
|
||||
parser.add_argument('--resource_encryption_key', type=str, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='')
|
||||
parser.add_argument('--max_run_time', type=int, required=True, help='The maximum run time in seconds for the training job.', default=86400)
|
||||
parser.add_argument('--model_artifact_path', type=str, required=True, help='Identifies the S3 path where you want Amazon SageMaker to store the model artifacts.')
|
||||
|
|
Loading…
Reference in New Issue