fix(components): Pass tuned model checkpoint to inference pipeline after RLHF tuning
PiperOrigin-RevId: 610918020
This commit is contained in:
parent
144761c948
commit
755c1f9898
|
|
@ -1,5 +1,6 @@
|
|||
## Upcoming release
|
||||
* Add `v1.automl.forecasting.learn_to_learn_forecasting_pipeline`, `v1.automl.forecasting.sequence_to_sequence_forecasting_pipeline`, `v1.automl.forecasting.temporal_fusion_transformer_forecasting_pipeline`, `v1.automl.forecasting.time_series_dense_encoder_forecasting_pipeline` as Forecasting on Pipelines moves to GA.
|
||||
* Fix bug in `preview.llm.rlhf_pipeline` that caused wrong output artifact to be used for inference after training.
|
||||
|
||||
## Release 2.10.0
|
||||
* Fix the missing output of pipeline remote runner. `AutoMLImageTrainingJobRunOp` now passes the model artifacts correctly to downstream components.
|
||||
|
|
|
|||
|
|
@ -152,7 +152,7 @@ def rlhf_pipeline(
|
|||
name='Perform Inference',
|
||||
):
|
||||
has_model_checkpoint = function_based.value_exists(
|
||||
value=rl_model_pipeline.outputs['output_adapter_path']
|
||||
value=rl_model_pipeline.outputs['output_model_path']
|
||||
).set_display_name('Resolve Model Checkpoint')
|
||||
with kfp.dsl.Condition(
|
||||
has_model_checkpoint.output == True, # pylint: disable=singleton-comparison
|
||||
|
|
@ -162,7 +162,7 @@ def rlhf_pipeline(
|
|||
project=project,
|
||||
location=location,
|
||||
large_model_reference=large_model_reference,
|
||||
model_checkpoint=rl_model_pipeline.outputs['output_adapter_path'],
|
||||
model_checkpoint=rl_model_pipeline.outputs['output_model_path'],
|
||||
prompt_dataset=eval_dataset,
|
||||
prompt_sequence_length=prompt_sequence_length,
|
||||
target_sequence_length=target_sequence_length,
|
||||
|
|
|
|||
Loading…
Reference in New Issue