feat(components): Adding Trainer component for PyTorch - KFP (#5767)
* Create README.md Initial Readme * Create README.md Initial commit for the PyTorch pipeline examples * Update README.md * Adding PyTorch training component Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com> * Adding PyTorch - trainer unit tests Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com> * Fixing UT and adding setup.py Signed-off-by: ankan94 <ankan@ideas2it.com> * update setup.py, trainer compopents pyfiles,applied pylyintrc Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * adressed the review comments,applied pylint, black Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * added copyright headers in tests files Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * updated base component Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * Changing to Apache2 License Reviewed license change with Legal team * Switch to Apache2 License * Add tox for test automation with presubmit script * Add model archiver to dependencies * Cleanup setup.py * Cleanup * Cleanup * Cleanup * Using common fixture for unit tests and adding gpu fix for saving the model Signed-off-by: Shrinath Suresh <shrinath@ideas2it.com> * Changing to Apache2 License Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * resolve typo Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * Added OWNERS * OWENRS will be added as separate PR * fix detect_version function in setup.py Signed-off-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> * Cleanup for setup description field warnings Co-authored-by: Geeta Chauhan <4461127+chauhang@users.noreply.github.com> Co-authored-by: ankan94 <ankan@ideas2it.com> Co-authored-by: Arvind-Ideas2IT <arvindkumarsingh.gautam@ideas2it.com> Co-authored-by: Geeta Chauhan <gchauhan@fb.com>
This commit is contained in:
parent
b08b29f46e
commit
c5325db7d2
|
|
@ -0,0 +1,7 @@
|
|||
*lightning_logs
|
||||
build
|
||||
dist
|
||||
.tox
|
||||
*.egg-info
|
||||
.coverag*
|
||||
.pytest*
|
||||
|
|
@ -0,0 +1,439 @@
|
|||
# This Pylint rcfile contains a best-effort configuration to uphold the
|
||||
# best-practices and style described in the Google Python style guide:
|
||||
# https://google.github.io/styleguide/pyguide.html
|
||||
#
|
||||
# Its canonical open-source location is:
|
||||
# https://google.github.io/styleguide/pylintrc
|
||||
|
||||
[MASTER]
|
||||
|
||||
# Files or directories to be skipped. They should be base names, not paths.
|
||||
ignore=third_party
|
||||
|
||||
# Files or directories matching the regex patterns are skipped. The regex
|
||||
# matches against base names, not paths.
|
||||
ignore-patterns=
|
||||
|
||||
# Pickle collected data for later comparisons.
|
||||
persistent=no
|
||||
|
||||
# List of plugins (as comma separated values of python modules names) to load,
|
||||
# usually to register additional checkers.
|
||||
load-plugins=
|
||||
|
||||
# Use multiple processes to speed up Pylint.
|
||||
jobs=4
|
||||
|
||||
# Allow loading of arbitrary C extensions. Extensions are imported into the
|
||||
# active Python interpreter and may run arbitrary code.
|
||||
unsafe-load-any-extension=no
|
||||
|
||||
|
||||
[MESSAGES CONTROL]
|
||||
|
||||
# Only show warnings with the listed confidence levels. Leave empty to show
|
||||
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
|
||||
confidence=
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
# multiple time (only on the command line, not in the configuration file where
|
||||
# it should appear only once). See also the "--disable" option for examples.
|
||||
#enable=
|
||||
|
||||
# Disable the message, report, category or checker with the given id(s). You
|
||||
# can either give multiple identifiers separated by comma (,) or put this
|
||||
# option multiple times (only on the command line, not in the configuration
|
||||
# file where it should appear only once).You can also use "--disable=all" to
|
||||
# disable everything first and then reenable specific checks. For example, if
|
||||
# you want to run only the similarities checker, you can use "--disable=all
|
||||
# --enable=similarities". If you want to run only the classes checker, but have
|
||||
# no Warning level messages displayed, use"--disable=all --enable=classes
|
||||
# --disable=W"
|
||||
disable=abstract-method,
|
||||
apply-builtin,
|
||||
arguments-differ,
|
||||
attribute-defined-outside-init,
|
||||
backtick,
|
||||
bad-option-value,
|
||||
basestring-builtin,
|
||||
buffer-builtin,
|
||||
c-extension-no-member,
|
||||
consider-using-enumerate,
|
||||
cmp-builtin,
|
||||
cmp-method,
|
||||
coerce-builtin,
|
||||
coerce-method,
|
||||
delslice-method,
|
||||
div-method,
|
||||
duplicate-code,
|
||||
eq-without-hash,
|
||||
execfile-builtin,
|
||||
file-builtin,
|
||||
filter-builtin-not-iterating,
|
||||
fixme,
|
||||
getslice-method,
|
||||
global-statement,
|
||||
hex-method,
|
||||
idiv-method,
|
||||
implicit-str-concat-in-sequence,
|
||||
import-error,
|
||||
import-self,
|
||||
import-star-module-level,
|
||||
inconsistent-return-statements,
|
||||
input-builtin,
|
||||
intern-builtin,
|
||||
invalid-str-codec,
|
||||
locally-disabled,
|
||||
long-builtin,
|
||||
long-suffix,
|
||||
map-builtin-not-iterating,
|
||||
misplaced-comparison-constant,
|
||||
missing-function-docstring,
|
||||
metaclass-assignment,
|
||||
next-method-called,
|
||||
next-method-defined,
|
||||
no-absolute-import,
|
||||
no-else-break,
|
||||
no-else-continue,
|
||||
no-else-raise,
|
||||
no-else-return,
|
||||
no-init, # added
|
||||
no-member,
|
||||
no-name-in-module,
|
||||
no-self-use,
|
||||
nonzero-method,
|
||||
oct-method,
|
||||
old-division,
|
||||
old-ne-operator,
|
||||
old-octal-literal,
|
||||
old-raise-syntax,
|
||||
parameter-unpacking,
|
||||
print-statement,
|
||||
raising-string,
|
||||
range-builtin-not-iterating,
|
||||
raw_input-builtin,
|
||||
rdiv-method,
|
||||
reduce-builtin,
|
||||
relative-import,
|
||||
reload-builtin,
|
||||
round-builtin,
|
||||
setslice-method,
|
||||
signature-differs,
|
||||
standarderror-builtin,
|
||||
suppressed-message,
|
||||
sys-max-int,
|
||||
too-few-public-methods,
|
||||
too-many-ancestors,
|
||||
too-many-arguments,
|
||||
too-many-boolean-expressions,
|
||||
too-many-branches,
|
||||
too-many-instance-attributes,
|
||||
too-many-locals,
|
||||
too-many-nested-blocks,
|
||||
too-many-public-methods,
|
||||
too-many-return-statements,
|
||||
too-many-statements,
|
||||
trailing-newlines,
|
||||
unichr-builtin,
|
||||
unicode-builtin,
|
||||
unnecessary-pass,
|
||||
unpacking-in-except,
|
||||
useless-else-on-loop,
|
||||
useless-object-inheritance,
|
||||
useless-suppression,
|
||||
using-cmp-argument,
|
||||
wrong-import-order,
|
||||
xrange-builtin,
|
||||
zip-builtin-not-iterating,
|
||||
|
||||
|
||||
[REPORTS]
|
||||
|
||||
# Set the output format. Available formats are text, parseable, colorized, msvs
|
||||
# (visual studio) and html. You can also give a reporter class, eg
|
||||
# mypackage.mymodule.MyReporterClass.
|
||||
output-format=text
|
||||
|
||||
# Put messages in a separate file for each module / package specified on the
|
||||
# command line instead of printing them on stdout. Reports (if any) will be
|
||||
# written in a file name "pylint_global.[txt|html]". This option is deprecated
|
||||
# and it will be removed in Pylint 2.0.
|
||||
files-output=no
|
||||
|
||||
# Tells whether to display a full report or only the messages
|
||||
reports=no
|
||||
|
||||
# Python expression which should return a note less than 10 (10 is the highest
|
||||
# note). You have access to the variables errors warning, statement which
|
||||
# respectively contain the number of errors / warnings messages and the total
|
||||
# number of statements analyzed. This is used by the global evaluation report
|
||||
# (RP0004).
|
||||
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
|
||||
|
||||
# Template used to display messages. This is a python new-style format string
|
||||
# used to format the message information. See doc for all details
|
||||
#msg-template=
|
||||
|
||||
|
||||
[BASIC]
|
||||
|
||||
# Good variable names which should always be accepted, separated by a comma
|
||||
good-names=main,_
|
||||
|
||||
# Bad variable names which should always be refused, separated by a comma
|
||||
bad-names=
|
||||
|
||||
# Colon-delimited sets of names that determine each other's naming style when
|
||||
# the name regexes allow several styles.
|
||||
name-group=
|
||||
|
||||
# Include a hint for the correct naming format with invalid-name
|
||||
include-naming-hint=no
|
||||
|
||||
# List of decorators that produce properties, such as abc.abstractproperty. Add
|
||||
# to this list to register other decorators that produce valid properties.
|
||||
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
|
||||
|
||||
# Regular expression matching correct function names
|
||||
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression matching correct variable names
|
||||
variable-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct constant names
|
||||
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct attribute names
|
||||
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct argument names
|
||||
argument-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class attribute names
|
||||
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct inline iteration names
|
||||
inlinevar-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class names
|
||||
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
|
||||
|
||||
# Regular expression matching correct module names
|
||||
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
|
||||
|
||||
# Regular expression matching correct method names
|
||||
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression which should only match function or class names that do
|
||||
# not require a docstring.
|
||||
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
|
||||
|
||||
# Minimum line length for functions/classes that require docstrings, shorter
|
||||
# ones are exempt.
|
||||
docstring-min-length=10
|
||||
|
||||
|
||||
[TYPECHECK]
|
||||
|
||||
# List of decorators that produce context managers, such as
|
||||
# contextlib.contextmanager. Add to this list to register other decorators that
|
||||
# produce valid context managers.
|
||||
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
|
||||
|
||||
# Tells whether missing members accessed in mixin class should be ignored. A
|
||||
# mixin class is detected if its name ends with "mixin" (case insensitive).
|
||||
ignore-mixin-members=yes
|
||||
|
||||
# List of module names for which member attributes should not be checked
|
||||
# (useful for modules/projects where namespaces are manipulated during runtime
|
||||
# and thus existing member attributes cannot be deduced by static analysis. It
|
||||
# supports qualified module names, as well as Unix pattern matching.
|
||||
ignored-modules=
|
||||
|
||||
# List of class names for which member attributes should not be checked (useful
|
||||
# for classes with dynamically set attributes). This supports the use of
|
||||
# qualified names.
|
||||
ignored-classes=optparse.Values,thread._local,_thread._local
|
||||
|
||||
# List of members which are set dynamically and missed by pylint inference
|
||||
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
||||
# expressions are accepted.
|
||||
generated-members=
|
||||
|
||||
|
||||
[FORMAT]
|
||||
|
||||
# Maximum number of characters on a single line.
|
||||
max-line-length=80
|
||||
|
||||
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
|
||||
# lines made too long by directives to pytype.
|
||||
|
||||
# Regexp for a line that is allowed to be longer than the limit.
|
||||
ignore-long-lines=(?x)(
|
||||
^\s*(\#\ )?<?https?://\S+>?$|
|
||||
^\s*(from\s+\S+\s+)?import\s+.+$)
|
||||
|
||||
# Allow the body of an if to be on the same line as the test if there is no
|
||||
# else.
|
||||
single-line-if-stmt=yes
|
||||
|
||||
# List of optional constructs for which whitespace checking is disabled. `dict-
|
||||
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
|
||||
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
|
||||
# `empty-line` allows space-only lines.
|
||||
no-space-check=
|
||||
|
||||
# Maximum number of lines in a module
|
||||
max-module-lines=99999
|
||||
|
||||
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
|
||||
# tab).
|
||||
indent-string=' '
|
||||
|
||||
# Number of spaces of indent required inside a hanging or continued line.
|
||||
indent-after-paren=4
|
||||
|
||||
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
|
||||
expected-line-ending-format=
|
||||
|
||||
|
||||
[MISCELLANEOUS]
|
||||
|
||||
# List of note tags to take in consideration, separated by a comma.
|
||||
notes=TODO
|
||||
|
||||
|
||||
[STRING]
|
||||
|
||||
# This flag controls whether inconsistent-quotes generates a warning when the
|
||||
# character used as a quote delimiter is used inconsistently within a module.
|
||||
check-quote-consistency=yes
|
||||
|
||||
|
||||
[VARIABLES]
|
||||
|
||||
# Tells whether we should check for unused import in __init__ files.
|
||||
init-import=no
|
||||
|
||||
# A regular expression matching the name of dummy variables (i.e. expectedly
|
||||
# not used).
|
||||
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
|
||||
|
||||
# List of additional names supposed to be defined in builtins. Remember that
|
||||
# you should avoid to define new builtins when possible.
|
||||
additional-builtins=
|
||||
|
||||
# List of strings which can identify a callback function by name. A callback
|
||||
# name must start or end with one of those strings.
|
||||
callbacks=cb_,_cb
|
||||
|
||||
# List of qualified module names which can have objects that can redefine
|
||||
# builtins.
|
||||
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
|
||||
|
||||
|
||||
[LOGGING]
|
||||
|
||||
# Logging modules to check that the string format arguments are in logging
|
||||
# function parameter format
|
||||
logging-modules=logging,absl.logging,tensorflow.io.logging
|
||||
|
||||
|
||||
[SIMILARITIES]
|
||||
|
||||
# Minimum lines number of a similarity.
|
||||
min-similarity-lines=4
|
||||
|
||||
# Ignore comments when computing similarities.
|
||||
ignore-comments=yes
|
||||
|
||||
# Ignore docstrings when computing similarities.
|
||||
ignore-docstrings=yes
|
||||
|
||||
# Ignore imports when computing similarities.
|
||||
ignore-imports=no
|
||||
|
||||
|
||||
[SPELLING]
|
||||
|
||||
# Spelling dictionary name. Available dictionaries: none. To make it working
|
||||
# install python-enchant package.
|
||||
spelling-dict=
|
||||
|
||||
# List of comma separated words that should not be checked.
|
||||
spelling-ignore-words=
|
||||
|
||||
# A path to a file that contains private dictionary; one word per line.
|
||||
spelling-private-dict-file=
|
||||
|
||||
# Tells whether to store unknown words to indicated private dictionary in
|
||||
# --spelling-private-dict-file option instead of raising a message.
|
||||
spelling-store-unknown-words=no
|
||||
|
||||
|
||||
[IMPORTS]
|
||||
|
||||
# Deprecated modules which should not be used, separated by a comma
|
||||
deprecated-modules=regsub,
|
||||
TERMIOS,
|
||||
Bastion,
|
||||
rexec,
|
||||
sets
|
||||
|
||||
# Create a graph of every (i.e. internal and external) dependencies in the
|
||||
# given file (report RP0402 must not be disabled)
|
||||
import-graph=
|
||||
|
||||
# Create a graph of external dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
ext-import-graph=
|
||||
|
||||
# Create a graph of internal dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
int-import-graph=
|
||||
|
||||
# Force import order to recognize a module as part of the standard
|
||||
# compatibility libraries.
|
||||
known-standard-library=
|
||||
|
||||
# Force import order to recognize a module as part of a third party library.
|
||||
known-third-party=enchant, absl
|
||||
|
||||
# Analyse import fallback blocks. This can be used to support both Python 2 and
|
||||
# 3 compatible code, which means that the block might have code that exists
|
||||
# only in one or another interpreter, leading to false positives when analysed.
|
||||
analyse-fallback-blocks=no
|
||||
|
||||
|
||||
[CLASSES]
|
||||
|
||||
# List of method names used to declare (i.e. assign) instance attributes.
|
||||
defining-attr-methods=__init__,
|
||||
__new__,
|
||||
setUp
|
||||
|
||||
# List of member names, which should be excluded from the protected access
|
||||
# warning.
|
||||
exclude-protected=_asdict,
|
||||
_fields,
|
||||
_replace,
|
||||
_source,
|
||||
_make
|
||||
|
||||
# List of valid names for the first argument in a class method.
|
||||
valid-classmethod-first-arg=cls,
|
||||
class_
|
||||
|
||||
# List of valid names for the first argument in a metaclass class method.
|
||||
valid-metaclass-classmethod-first-arg=mcs
|
||||
|
||||
|
||||
[EXCEPTIONS]
|
||||
|
||||
# Exceptions that will emit a warning when being caught. Defaults to
|
||||
# "Exception"
|
||||
overgeneral-exceptions=StandardError,
|
||||
Exception,
|
||||
BaseException
|
||||
|
|
@ -0,0 +1,190 @@
|
|||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
Copyright (c) 2021 Facebook, Inc. and its affiliates.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
# PyTorch Kubeflow Pipeline Components
|
||||
|
||||
PyTorch Kubeflow Pipeline Components provides an SDK and a set of components that lets you build kubeflow pipelines using PyTorch. You can use the predefined components in this repository to build your pipeline using the Kubeflow Pipelines SDK.
|
||||
|
||||
## Installation
|
||||
### Requirements
|
||||
Python >= 3.6
|
||||
Kubeflow cluster setuo (on-prem or in any of the Clouds)
|
||||
|
||||
### Install latest release
|
||||
Use the following command to install PyTorch Pipeline Components from PyPI.
|
||||
|
||||
```
|
||||
pip install -U pytorch-kfp-components
|
||||
```
|
||||
|
||||
### Install from source
|
||||
Use the following commands to install PyTorch Kubeflow Pipeline Components from GitHub.
|
||||
|
||||
```
|
||||
git clone https://github.com/kubeflow/pipelines.git
|
||||
pip install pipelines/components/PyTorch/pytorch_kfp_components/.
|
||||
```
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
[build-system]
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"wheel"
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
|
@ -0,0 +1,439 @@
|
|||
# This Pylint rcfile contains a best-effort configuration to uphold the
|
||||
# best-practices and style described in the Google Python style guide:
|
||||
# https://google.github.io/styleguide/pyguide.html
|
||||
#
|
||||
# Its canonical open-source location is:
|
||||
# https://google.github.io/styleguide/pylintrc
|
||||
|
||||
[MASTER]
|
||||
|
||||
# Files or directories to be skipped. They should be base names, not paths.
|
||||
ignore=third_party
|
||||
|
||||
# Files or directories matching the regex patterns are skipped. The regex
|
||||
# matches against base names, not paths.
|
||||
ignore-patterns=
|
||||
|
||||
# Pickle collected data for later comparisons.
|
||||
persistent=no
|
||||
|
||||
# List of plugins (as comma separated values of python modules names) to load,
|
||||
# usually to register additional checkers.
|
||||
load-plugins=
|
||||
|
||||
# Use multiple processes to speed up Pylint.
|
||||
jobs=4
|
||||
|
||||
# Allow loading of arbitrary C extensions. Extensions are imported into the
|
||||
# active Python interpreter and may run arbitrary code.
|
||||
unsafe-load-any-extension=no
|
||||
|
||||
|
||||
[MESSAGES CONTROL]
|
||||
|
||||
# Only show warnings with the listed confidence levels. Leave empty to show
|
||||
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
|
||||
confidence=
|
||||
|
||||
# Enable the message, report, category or checker with the given id(s). You can
|
||||
# either give multiple identifier separated by comma (,) or put this option
|
||||
# multiple time (only on the command line, not in the configuration file where
|
||||
# it should appear only once). See also the "--disable" option for examples.
|
||||
#enable=
|
||||
|
||||
# Disable the message, report, category or checker with the given id(s). You
|
||||
# can either give multiple identifiers separated by comma (,) or put this
|
||||
# option multiple times (only on the command line, not in the configuration
|
||||
# file where it should appear only once).You can also use "--disable=all" to
|
||||
# disable everything first and then reenable specific checks. For example, if
|
||||
# you want to run only the similarities checker, you can use "--disable=all
|
||||
# --enable=similarities". If you want to run only the classes checker, but have
|
||||
# no Warning level messages displayed, use"--disable=all --enable=classes
|
||||
# --disable=W"
|
||||
disable=abstract-method,
|
||||
apply-builtin,
|
||||
arguments-differ,
|
||||
attribute-defined-outside-init,
|
||||
backtick,
|
||||
bad-option-value,
|
||||
basestring-builtin,
|
||||
buffer-builtin,
|
||||
c-extension-no-member,
|
||||
consider-using-enumerate,
|
||||
cmp-builtin,
|
||||
cmp-method,
|
||||
coerce-builtin,
|
||||
coerce-method,
|
||||
delslice-method,
|
||||
div-method,
|
||||
duplicate-code,
|
||||
eq-without-hash,
|
||||
execfile-builtin,
|
||||
file-builtin,
|
||||
filter-builtin-not-iterating,
|
||||
fixme,
|
||||
getslice-method,
|
||||
global-statement,
|
||||
hex-method,
|
||||
idiv-method,
|
||||
implicit-str-concat-in-sequence,
|
||||
import-error,
|
||||
import-self,
|
||||
import-star-module-level,
|
||||
inconsistent-return-statements,
|
||||
input-builtin,
|
||||
intern-builtin,
|
||||
invalid-str-codec,
|
||||
locally-disabled,
|
||||
long-builtin,
|
||||
long-suffix,
|
||||
map-builtin-not-iterating,
|
||||
misplaced-comparison-constant,
|
||||
missing-function-docstring,
|
||||
metaclass-assignment,
|
||||
next-method-called,
|
||||
next-method-defined,
|
||||
no-absolute-import,
|
||||
no-else-break,
|
||||
no-else-continue,
|
||||
no-else-raise,
|
||||
no-else-return,
|
||||
no-init, # added
|
||||
no-member,
|
||||
no-name-in-module,
|
||||
no-self-use,
|
||||
nonzero-method,
|
||||
oct-method,
|
||||
old-division,
|
||||
old-ne-operator,
|
||||
old-octal-literal,
|
||||
old-raise-syntax,
|
||||
parameter-unpacking,
|
||||
print-statement,
|
||||
raising-string,
|
||||
range-builtin-not-iterating,
|
||||
raw_input-builtin,
|
||||
rdiv-method,
|
||||
reduce-builtin,
|
||||
relative-import,
|
||||
reload-builtin,
|
||||
round-builtin,
|
||||
setslice-method,
|
||||
signature-differs,
|
||||
standarderror-builtin,
|
||||
suppressed-message,
|
||||
sys-max-int,
|
||||
too-few-public-methods,
|
||||
too-many-ancestors,
|
||||
too-many-arguments,
|
||||
too-many-boolean-expressions,
|
||||
too-many-branches,
|
||||
too-many-instance-attributes,
|
||||
too-many-locals,
|
||||
too-many-nested-blocks,
|
||||
too-many-public-methods,
|
||||
too-many-return-statements,
|
||||
too-many-statements,
|
||||
trailing-newlines,
|
||||
unichr-builtin,
|
||||
unicode-builtin,
|
||||
unnecessary-pass,
|
||||
unpacking-in-except,
|
||||
useless-else-on-loop,
|
||||
useless-object-inheritance,
|
||||
useless-suppression,
|
||||
using-cmp-argument,
|
||||
wrong-import-order,
|
||||
xrange-builtin,
|
||||
zip-builtin-not-iterating,
|
||||
|
||||
|
||||
[REPORTS]
|
||||
|
||||
# Set the output format. Available formats are text, parseable, colorized, msvs
|
||||
# (visual studio) and html. You can also give a reporter class, eg
|
||||
# mypackage.mymodule.MyReporterClass.
|
||||
output-format=text
|
||||
|
||||
# Put messages in a separate file for each module / package specified on the
|
||||
# command line instead of printing them on stdout. Reports (if any) will be
|
||||
# written in a file name "pylint_global.[txt|html]". This option is deprecated
|
||||
# and it will be removed in Pylint 2.0.
|
||||
files-output=no
|
||||
|
||||
# Tells whether to display a full report or only the messages
|
||||
reports=no
|
||||
|
||||
# Python expression which should return a note less than 10 (10 is the highest
|
||||
# note). You have access to the variables errors warning, statement which
|
||||
# respectively contain the number of errors / warnings messages and the total
|
||||
# number of statements analyzed. This is used by the global evaluation report
|
||||
# (RP0004).
|
||||
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
|
||||
|
||||
# Template used to display messages. This is a python new-style format string
|
||||
# used to format the message information. See doc for all details
|
||||
#msg-template=
|
||||
|
||||
|
||||
[BASIC]
|
||||
|
||||
# Good variable names which should always be accepted, separated by a comma
|
||||
good-names=main,_
|
||||
|
||||
# Bad variable names which should always be refused, separated by a comma
|
||||
bad-names=
|
||||
|
||||
# Colon-delimited sets of names that determine each other's naming style when
|
||||
# the name regexes allow several styles.
|
||||
name-group=
|
||||
|
||||
# Include a hint for the correct naming format with invalid-name
|
||||
include-naming-hint=no
|
||||
|
||||
# List of decorators that produce properties, such as abc.abstractproperty. Add
|
||||
# to this list to register other decorators that produce valid properties.
|
||||
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
|
||||
|
||||
# Regular expression matching correct function names
|
||||
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression matching correct variable names
|
||||
variable-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct constant names
|
||||
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct attribute names
|
||||
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct argument names
|
||||
argument-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class attribute names
|
||||
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
|
||||
|
||||
# Regular expression matching correct inline iteration names
|
||||
inlinevar-rgx=^[a-z][a-z0-9_]*$
|
||||
|
||||
# Regular expression matching correct class names
|
||||
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
|
||||
|
||||
# Regular expression matching correct module names
|
||||
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
|
||||
|
||||
# Regular expression matching correct method names
|
||||
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
|
||||
|
||||
# Regular expression which should only match function or class names that do
|
||||
# not require a docstring.
|
||||
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
|
||||
|
||||
# Minimum line length for functions/classes that require docstrings, shorter
|
||||
# ones are exempt.
|
||||
docstring-min-length=10
|
||||
|
||||
|
||||
[TYPECHECK]
|
||||
|
||||
# List of decorators that produce context managers, such as
|
||||
# contextlib.contextmanager. Add to this list to register other decorators that
|
||||
# produce valid context managers.
|
||||
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
|
||||
|
||||
# Tells whether missing members accessed in mixin class should be ignored. A
|
||||
# mixin class is detected if its name ends with "mixin" (case insensitive).
|
||||
ignore-mixin-members=yes
|
||||
|
||||
# List of module names for which member attributes should not be checked
|
||||
# (useful for modules/projects where namespaces are manipulated during runtime
|
||||
# and thus existing member attributes cannot be deduced by static analysis. It
|
||||
# supports qualified module names, as well as Unix pattern matching.
|
||||
ignored-modules=
|
||||
|
||||
# List of class names for which member attributes should not be checked (useful
|
||||
# for classes with dynamically set attributes). This supports the use of
|
||||
# qualified names.
|
||||
ignored-classes=optparse.Values,thread._local,_thread._local
|
||||
|
||||
# List of members which are set dynamically and missed by pylint inference
|
||||
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
||||
# expressions are accepted.
|
||||
generated-members=
|
||||
|
||||
|
||||
[FORMAT]
|
||||
|
||||
# Maximum number of characters on a single line.
|
||||
max-line-length=80
|
||||
|
||||
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
|
||||
# lines made too long by directives to pytype.
|
||||
|
||||
# Regexp for a line that is allowed to be longer than the limit.
|
||||
ignore-long-lines=(?x)(
|
||||
^\s*(\#\ )?<?https?://\S+>?$|
|
||||
^\s*(from\s+\S+\s+)?import\s+.+$)
|
||||
|
||||
# Allow the body of an if to be on the same line as the test if there is no
|
||||
# else.
|
||||
single-line-if-stmt=yes
|
||||
|
||||
# List of optional constructs for which whitespace checking is disabled. `dict-
|
||||
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
|
||||
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
|
||||
# `empty-line` allows space-only lines.
|
||||
no-space-check=
|
||||
|
||||
# Maximum number of lines in a module
|
||||
max-module-lines=99999
|
||||
|
||||
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
|
||||
# tab).
|
||||
indent-string=' '
|
||||
|
||||
# Number of spaces of indent required inside a hanging or continued line.
|
||||
indent-after-paren=4
|
||||
|
||||
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
|
||||
expected-line-ending-format=
|
||||
|
||||
|
||||
[MISCELLANEOUS]
|
||||
|
||||
# List of note tags to take in consideration, separated by a comma.
|
||||
notes=TODO
|
||||
|
||||
|
||||
[STRING]
|
||||
|
||||
# This flag controls whether inconsistent-quotes generates a warning when the
|
||||
# character used as a quote delimiter is used inconsistently within a module.
|
||||
check-quote-consistency=yes
|
||||
|
||||
|
||||
[VARIABLES]
|
||||
|
||||
# Tells whether we should check for unused import in __init__ files.
|
||||
init-import=no
|
||||
|
||||
# A regular expression matching the name of dummy variables (i.e. expectedly
|
||||
# not used).
|
||||
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
|
||||
|
||||
# List of additional names supposed to be defined in builtins. Remember that
|
||||
# you should avoid to define new builtins when possible.
|
||||
additional-builtins=
|
||||
|
||||
# List of strings which can identify a callback function by name. A callback
|
||||
# name must start or end with one of those strings.
|
||||
callbacks=cb_,_cb
|
||||
|
||||
# List of qualified module names which can have objects that can redefine
|
||||
# builtins.
|
||||
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
|
||||
|
||||
|
||||
[LOGGING]
|
||||
|
||||
# Logging modules to check that the string format arguments are in logging
|
||||
# function parameter format
|
||||
logging-modules=logging,absl.logging,tensorflow.io.logging
|
||||
|
||||
|
||||
[SIMILARITIES]
|
||||
|
||||
# Minimum lines number of a similarity.
|
||||
min-similarity-lines=4
|
||||
|
||||
# Ignore comments when computing similarities.
|
||||
ignore-comments=yes
|
||||
|
||||
# Ignore docstrings when computing similarities.
|
||||
ignore-docstrings=yes
|
||||
|
||||
# Ignore imports when computing similarities.
|
||||
ignore-imports=no
|
||||
|
||||
|
||||
[SPELLING]
|
||||
|
||||
# Spelling dictionary name. Available dictionaries: none. To make it working
|
||||
# install python-enchant package.
|
||||
spelling-dict=
|
||||
|
||||
# List of comma separated words that should not be checked.
|
||||
spelling-ignore-words=
|
||||
|
||||
# A path to a file that contains private dictionary; one word per line.
|
||||
spelling-private-dict-file=
|
||||
|
||||
# Tells whether to store unknown words to indicated private dictionary in
|
||||
# --spelling-private-dict-file option instead of raising a message.
|
||||
spelling-store-unknown-words=no
|
||||
|
||||
|
||||
[IMPORTS]
|
||||
|
||||
# Deprecated modules which should not be used, separated by a comma
|
||||
deprecated-modules=regsub,
|
||||
TERMIOS,
|
||||
Bastion,
|
||||
rexec,
|
||||
sets
|
||||
|
||||
# Create a graph of every (i.e. internal and external) dependencies in the
|
||||
# given file (report RP0402 must not be disabled)
|
||||
import-graph=
|
||||
|
||||
# Create a graph of external dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
ext-import-graph=
|
||||
|
||||
# Create a graph of internal dependencies in the given file (report RP0402 must
|
||||
# not be disabled)
|
||||
int-import-graph=
|
||||
|
||||
# Force import order to recognize a module as part of the standard
|
||||
# compatibility libraries.
|
||||
known-standard-library=
|
||||
|
||||
# Force import order to recognize a module as part of a third party library.
|
||||
known-third-party=enchant, absl
|
||||
|
||||
# Analyse import fallback blocks. This can be used to support both Python 2 and
|
||||
# 3 compatible code, which means that the block might have code that exists
|
||||
# only in one or another interpreter, leading to false positives when analysed.
|
||||
analyse-fallback-blocks=no
|
||||
|
||||
|
||||
[CLASSES]
|
||||
|
||||
# List of method names used to declare (i.e. assign) instance attributes.
|
||||
defining-attr-methods=__init__,
|
||||
__new__,
|
||||
setUp
|
||||
|
||||
# List of member names, which should be excluded from the protected access
|
||||
# warning.
|
||||
exclude-protected=_asdict,
|
||||
_fields,
|
||||
_replace,
|
||||
_source,
|
||||
_make
|
||||
|
||||
# List of valid names for the first argument in a class method.
|
||||
valid-classmethod-first-arg=cls,
|
||||
class_
|
||||
|
||||
# List of valid names for the first argument in a metaclass class method.
|
||||
valid-metaclass-classmethod-first-arg=mcs
|
||||
|
||||
|
||||
[EXCEPTIONS]
|
||||
|
||||
# Exceptions that will emit a warning when being caught. Defaults to
|
||||
# "Exception"
|
||||
overgeneral-exceptions=StandardError,
|
||||
Exception,
|
||||
BaseException
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch Kubeflow Pipeline Root."""
|
||||
|
||||
__version__ = "0.1.1dev"
|
||||
|
|
@ -0,0 +1,115 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Pipeline Base component class."""
|
||||
|
||||
import abc
|
||||
from six import with_metaclass
|
||||
from pytorch_kfp_components.types import standard_component_specs
|
||||
|
||||
|
||||
class BaseComponent(with_metaclass(abc.ABCMeta, object)): # pylint: disable=R0903
|
||||
"""Pipeline Base component class."""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def _validate_spec(
|
||||
cls,
|
||||
spec: standard_component_specs,
|
||||
input_dict: dict,
|
||||
output_dict: dict,
|
||||
exec_properties: dict,
|
||||
):
|
||||
"""validate the specifications 'type'.
|
||||
|
||||
Args:
|
||||
spec: The standard component specifications
|
||||
input_dict : A dictionary of inputs.
|
||||
ouput-dict :
|
||||
exec_properties : A dict of execution properties.
|
||||
"""
|
||||
|
||||
for key, value in input_dict.items():
|
||||
cls._type_check(
|
||||
actual_value=value, key=key, spec_dict=spec.INPUT_DICT
|
||||
)
|
||||
|
||||
for key, value in output_dict.items():
|
||||
cls._type_check(
|
||||
actual_value=value, key=key, spec_dict=spec.OUTPUT_DICT
|
||||
)
|
||||
|
||||
for key, value in exec_properties.items():
|
||||
cls._type_check(
|
||||
actual_value=value,
|
||||
key=key,
|
||||
spec_dict=spec.EXECUTION_PROPERTIES
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _optional_check(cls, actual_value: any, key: str, spec_dict: dict):
|
||||
"""Checks for optional specification.
|
||||
|
||||
Args:
|
||||
actual_value : Value of the dictionary.
|
||||
key: key for the correspondin value.
|
||||
spec_dict : The dict of specification for validation.
|
||||
Returns :
|
||||
is_optional : The optional key.
|
||||
Raises :
|
||||
ValueError : If the key is not optional
|
||||
"""
|
||||
is_optional = spec_dict[key].optional
|
||||
|
||||
if not is_optional and not actual_value:
|
||||
raise ValueError(
|
||||
"{key} is not optional. Received value: {actual_value}".format(
|
||||
key=key, actual_value=actual_value
|
||||
)
|
||||
)
|
||||
|
||||
return is_optional
|
||||
|
||||
@classmethod
|
||||
def _type_check(cls, actual_value, key, spec_dict):
|
||||
"""Checks the type of specifactions.
|
||||
|
||||
Args:
|
||||
actual_value : Value of the dictionary.
|
||||
key: key for the correspondin value.
|
||||
spec_dict : The dict of specification for validation.
|
||||
|
||||
Raises :
|
||||
TypeError : If key value type does not match expected value type.
|
||||
"""
|
||||
if not actual_value:
|
||||
is_optional = cls._optional_check(
|
||||
actual_value=actual_value, key=key, spec_dict=spec_dict
|
||||
)
|
||||
if is_optional:
|
||||
return
|
||||
|
||||
expected_type = spec_dict[key].type
|
||||
actual_type = type(actual_value)
|
||||
if actual_type != expected_type:
|
||||
raise TypeError(
|
||||
"{key} must be of type {expected_type} but received as {actual_type}"
|
||||
.format(
|
||||
key=key,
|
||||
expected_type=expected_type,
|
||||
actual_type=actual_type,
|
||||
)
|
||||
)
|
||||
|
|
@ -0,0 +1,43 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Pipeline Base Executor class."""
|
||||
import abc
|
||||
import logging
|
||||
from six import with_metaclass
|
||||
|
||||
|
||||
class BaseExecutor(with_metaclass(abc.ABCMeta, object)): # pylint: disable=R0903
|
||||
"""Pipeline Base Executor abstract class."""
|
||||
|
||||
def __init__(self):
|
||||
pass # pylint: disable=W0107
|
||||
|
||||
@abc.abstractmethod
|
||||
def Do(self, input_dict: dict, output_dict: dict, exec_properties: dict): # pylint: disable=C0103
|
||||
"""A Do function that does nothing."""
|
||||
pass # pylint: disable=W0107
|
||||
|
||||
def _log_startup(
|
||||
self, input_dict: dict, output_dict: dict, exec_properties
|
||||
):
|
||||
"""Log inputs, outputs, and executor properties in a standard
|
||||
format."""
|
||||
class_name = self.__class__.__name__
|
||||
logging.debug("Starting %s execution.", class_name)
|
||||
logging.debug("Inputs for %s are: %s .", class_name, input_dict)
|
||||
logging.debug("Outputs for %s are: %s.", class_name, output_dict)
|
||||
logging.debug(
|
||||
"Execution Properties for %s are: %s",
|
||||
class_name, exec_properties)
|
||||
|
|
@ -0,0 +1,86 @@
|
|||
#!/usr/bin/env/python3
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Training Component class."""
|
||||
|
||||
from typing import Optional, Dict
|
||||
from pytorch_kfp_components.components.trainer.executor import Executor
|
||||
from pytorch_kfp_components.components.base.base_component import BaseComponent
|
||||
from pytorch_kfp_components.types import standard_component_specs
|
||||
|
||||
|
||||
class Trainer(BaseComponent):
|
||||
"""Initializes the Trainer class."""
|
||||
|
||||
def __init__( # pylint: disable=R0913
|
||||
self,
|
||||
module_file: Optional = None,
|
||||
data_module_file: Optional = None,
|
||||
data_module_args: Optional[Dict] = None,
|
||||
module_file_args: Optional[Dict] = None,
|
||||
trainer_args: Optional[Dict] = None,
|
||||
):
|
||||
"""Initializes the PyTorch Lightning training process.
|
||||
|
||||
Args:
|
||||
module_file : Inherit the model class for training.
|
||||
data_module_file : From this the data module class is inherited.
|
||||
data_module_args : The arguments of the data module.
|
||||
module_file_args : The arguments of the model class.
|
||||
trainer_args : arguments specific to the PTL trainer.
|
||||
|
||||
Raises:
|
||||
NotImplementedError : If mandatory args;
|
||||
module_file or data_module_file is empty.
|
||||
"""
|
||||
|
||||
super(Trainer, self).__init__() # pylint: disable=R1725
|
||||
input_dict = {
|
||||
standard_component_specs.TRAINER_MODULE_FILE: module_file,
|
||||
standard_component_specs.TRAINER_DATA_MODULE_FILE: data_module_file,
|
||||
}
|
||||
|
||||
output_dict = {}
|
||||
|
||||
exec_properties = {
|
||||
standard_component_specs.TRAINER_DATA_MODULE_ARGS: data_module_args,
|
||||
standard_component_specs.TRAINER_MODULE_ARGS: module_file_args,
|
||||
standard_component_specs.PTL_TRAINER_ARGS: trainer_args,
|
||||
}
|
||||
|
||||
spec = standard_component_specs.TrainerSpec()
|
||||
self._validate_spec(
|
||||
spec=spec,
|
||||
input_dict=input_dict,
|
||||
output_dict=output_dict,
|
||||
exec_properties=exec_properties,
|
||||
)
|
||||
|
||||
if module_file and data_module_file:
|
||||
# Both module file and data module file are present
|
||||
|
||||
Executor().Do(
|
||||
input_dict=input_dict,
|
||||
output_dict=output_dict,
|
||||
exec_properties=exec_properties,
|
||||
)
|
||||
|
||||
self.ptl_trainer = output_dict.get(
|
||||
standard_component_specs.PTL_TRAINER_OBJ, "None"
|
||||
)
|
||||
self.output_dict = output_dict
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Module file and Datamodule file are mandatory. "
|
||||
"Custom training methods are yet to be implemented"
|
||||
)
|
||||
|
|
@ -0,0 +1,122 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Training Executor class."""
|
||||
|
||||
import os
|
||||
from argparse import Namespace
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from pytorch_kfp_components.components.trainer.generic_executor import (
|
||||
GenericExecutor,
|
||||
)
|
||||
from pytorch_kfp_components.types import standard_component_specs
|
||||
|
||||
|
||||
class Executor(GenericExecutor):
|
||||
"""The Training Executor class."""
|
||||
|
||||
def __init__(self): # pylint:disable=useless-super-delegation
|
||||
super().__init__()
|
||||
|
||||
def Do(self, input_dict: dict, output_dict: dict, exec_properties: dict):
|
||||
"""This function of the Executor invokes the PyTorch Lightning training
|
||||
loop.
|
||||
|
||||
Args:
|
||||
input_dict : The dictionary of inputs.Example
|
||||
: model file, data module file
|
||||
output_dict :
|
||||
exec_properties : A dict of execution properties
|
||||
including data_module_args,
|
||||
trainer_args, module_file_args
|
||||
|
||||
Returns:
|
||||
trainer : The object of PyTorch-Lightning Trainer.
|
||||
|
||||
Raises:
|
||||
ValueError : If both of module_file_arfs or trainer_args are empty.
|
||||
TypeError : If the type of trainer_args is not dict.
|
||||
NotImplementedError : If mandatory args;
|
||||
module_file or data_module_file is empty.
|
||||
"""
|
||||
self._log_startup(
|
||||
input_dict=input_dict,
|
||||
output_dict=output_dict,
|
||||
exec_properties=exec_properties,
|
||||
)
|
||||
|
||||
(
|
||||
module_file,
|
||||
data_module_file,
|
||||
trainer_args,
|
||||
module_file_args,
|
||||
data_module_args,
|
||||
) = self._GetFnArgs(
|
||||
input_dict=input_dict,
|
||||
output_dict=output_dict,
|
||||
execution_properties=exec_properties,
|
||||
)
|
||||
|
||||
(
|
||||
model_class,
|
||||
data_module_class,
|
||||
) = self.derive_model_and_data_module_class(
|
||||
module_file=module_file, data_module_file=data_module_file
|
||||
)
|
||||
if data_module_class:
|
||||
data_module = data_module_class(
|
||||
**data_module_args if data_module_args else {}
|
||||
)
|
||||
data_module.prepare_data()
|
||||
data_module.setup(stage="fit")
|
||||
model = model_class(**module_file_args if module_file_args else {})
|
||||
|
||||
if (not module_file_args) and (not trainer_args):
|
||||
raise ValueError("Module file & trainer args can't be empty")
|
||||
|
||||
if not isinstance(trainer_args, dict):
|
||||
raise TypeError("trainer_args must be a dict")
|
||||
|
||||
trainer_args.update(module_file_args)
|
||||
parser = Namespace(**trainer_args)
|
||||
trainer = pl.Trainer.from_argparse_args(parser)
|
||||
|
||||
trainer.fit(model, data_module)
|
||||
trainer.test()
|
||||
|
||||
if "checkpoint_dir" in module_file_args:
|
||||
model_save_path = module_file_args["checkpoint_dir"]
|
||||
else:
|
||||
model_save_path = "/tmp"
|
||||
|
||||
if "model_name" in module_file_args:
|
||||
model_name = module_file_args["model_name"]
|
||||
else:
|
||||
model_name = "model_state_dict.pth"
|
||||
|
||||
model_save_path = os.path.join(model_save_path, model_name)
|
||||
if trainer.global_rank == 0:
|
||||
print("Saving model to {}".format(model_save_path))
|
||||
torch.save(model.state_dict(), model_save_path)
|
||||
|
||||
output_dict[standard_component_specs.TRAINER_MODEL_SAVE_PATH
|
||||
] = model_save_path
|
||||
output_dict[standard_component_specs.PTL_TRAINER_OBJ] = trainer
|
||||
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Data module class is mandatory. "
|
||||
"User defined training module is yet to be supported."
|
||||
)
|
||||
|
|
@ -0,0 +1,115 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Generic Executor Class."""
|
||||
import importlib
|
||||
import inspect
|
||||
from pytorch_kfp_components.components.base.base_executor import BaseExecutor
|
||||
from pytorch_kfp_components.types import standard_component_specs
|
||||
|
||||
|
||||
class GenericExecutor(BaseExecutor):
|
||||
"""Generic Executor Class that does nothing."""
|
||||
|
||||
def Do(self, input_dict: dict, output_dict: dict, exec_properties: dict):
|
||||
# TODO: Code to train pretrained model
|
||||
pass
|
||||
|
||||
def _GetFnArgs(
|
||||
self, input_dict: dict, output_dict: dict, execution_properties: dict
|
||||
):
|
||||
"""Gets the input/output/execution properties from the dictionary.
|
||||
|
||||
Args:
|
||||
input_dict : The dictionary of inputs.Example :
|
||||
model file, data module file
|
||||
output_dict :
|
||||
exec_properties : A dict of execution properties including
|
||||
data_module_args,trainer_args, module_file_args
|
||||
Returns:
|
||||
module_file : The model file name
|
||||
data_module_file : A data module file name
|
||||
trainer_args: A dictionary of trainer args
|
||||
module_file_args : A dictionary of model specific args
|
||||
data_module_args : A dictionary of data module args.
|
||||
"""
|
||||
module_file = input_dict.get(
|
||||
standard_component_specs.TRAINER_MODULE_FILE
|
||||
)
|
||||
data_module_file = input_dict.get(
|
||||
standard_component_specs.TRAINER_DATA_MODULE_FILE
|
||||
)
|
||||
trainer_args = execution_properties.get(
|
||||
standard_component_specs.PTL_TRAINER_ARGS
|
||||
)
|
||||
module_file_args = execution_properties.get(
|
||||
standard_component_specs.TRAINER_MODULE_ARGS
|
||||
)
|
||||
data_module_args = execution_properties.get(
|
||||
(standard_component_specs.TRAINER_DATA_MODULE_ARGS)
|
||||
)
|
||||
return (
|
||||
module_file,
|
||||
data_module_file,
|
||||
trainer_args,
|
||||
module_file_args,
|
||||
data_module_args,
|
||||
)
|
||||
|
||||
def derive_model_and_data_module_class(
|
||||
self, module_file: str, data_module_file: str
|
||||
):
|
||||
"""Derives the model file and data modul file.
|
||||
|
||||
Args :
|
||||
module_file : A model file name (type:str)
|
||||
data_module_file : A data module file name (type:str)
|
||||
|
||||
Returns :
|
||||
model_class : The model class
|
||||
data_module_class : The data module class.
|
||||
|
||||
Raises :
|
||||
ValueError: If the model file or data module file is empty.
|
||||
"""
|
||||
model_class = None
|
||||
data_module_class = None
|
||||
|
||||
class_module = importlib.import_module(module_file.split(".")[0])
|
||||
data_module = importlib.import_module(data_module_file.split(".")[0])
|
||||
|
||||
for cls in inspect.getmembers(
|
||||
class_module,
|
||||
lambda member: inspect.isclass(member) and member.__module__ ==
|
||||
class_module.__name__,
|
||||
):
|
||||
model_class = cls[1]
|
||||
|
||||
if not model_class:
|
||||
raise ValueError(f"Unable to load module_file - {module_file}")
|
||||
|
||||
for cls in inspect.getmembers(
|
||||
data_module,
|
||||
lambda member: inspect.isclass(member) and member.__module__ ==
|
||||
data_module.__name__,
|
||||
):
|
||||
data_module_class = cls[1]
|
||||
|
||||
if not data_module_class:
|
||||
raise ValueError(
|
||||
f"Unable to load data_module_file - {data_module_file}"
|
||||
)
|
||||
|
||||
return model_class, data_module_class
|
||||
|
|
@ -42,7 +42,6 @@ MINIO_BUCKET_NAME = "bucket_name"
|
|||
MINIO_DESTINATION = "destination"
|
||||
MINIO_ENDPOINT = "endpoint"
|
||||
|
||||
|
||||
class Parameters: # pylint: disable=R0903
|
||||
"""Parameter class to match the desired type."""
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,2 @@
|
|||
[metadata]
|
||||
description_file = README.md
|
||||
|
|
@ -0,0 +1,106 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Setup script."""
|
||||
|
||||
import importlib
|
||||
import os
|
||||
import types
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
|
||||
def make_required_install_packages():
|
||||
return [
|
||||
"kfp>=1.6.1",
|
||||
"torch>=1.7.1",
|
||||
"torchserve>=0.3.0",
|
||||
"torch-model-archiver",
|
||||
"pytorch-lightning==1.3.2",
|
||||
]
|
||||
|
||||
|
||||
def make_required_test_packages():
|
||||
return make_required_install_packages() + [
|
||||
"mock>=4.0.0",
|
||||
"flake8>=3.0.0",
|
||||
"pylint",
|
||||
"pytest>=6.0.0",
|
||||
"wget",
|
||||
"pandas",
|
||||
"minio"
|
||||
]
|
||||
|
||||
|
||||
def make_dependency_links():
|
||||
return []
|
||||
|
||||
|
||||
def detect_version(base_path):
|
||||
loader = importlib.machinery.SourceFileLoader(
|
||||
fullname="version",
|
||||
path=os.path.join(base_path,
|
||||
"pytorch_kfp_components/__init__.py"),
|
||||
)
|
||||
version = types.ModuleType(loader.name)
|
||||
loader.exec_module(version)
|
||||
return version.__version__
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
relative_directory = os.path.relpath(
|
||||
os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
version = detect_version(relative_directory)
|
||||
|
||||
setup(
|
||||
name="pytorch-kfp-components",
|
||||
version=version,
|
||||
description="PyTorch Kubeflow Pipeline",
|
||||
url="https://github.com/kubeflow/pipelines/tree/master/components",
|
||||
author="The PyTorch Kubeflow Pipeline Components authors",
|
||||
author_email="pytorch-kfp-components@fb.com",
|
||||
license="Apache License 2.0",
|
||||
extras_require={"tests": make_required_test_packages()},
|
||||
include_package_data=True,
|
||||
python_requires=">=3.6",
|
||||
install_requires=make_required_install_packages(),
|
||||
dependency_links=make_dependency_links(),
|
||||
keywords=[
|
||||
"Kubeflow",
|
||||
"ML workflow",
|
||||
"PyTorch",
|
||||
],
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Operating System :: Unix",
|
||||
"Operating System :: MacOS",
|
||||
"Intended Audience :: Developers",
|
||||
"Intended Audience :: Education",
|
||||
"Intended Audience :: Science/Research",
|
||||
"License :: OSI Approved :: Apache Software License",
|
||||
"Programming Language :: Python :: 3 :: Only",
|
||||
"Topic :: Scientific/Engineering",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"Topic :: Software Development",
|
||||
"Topic :: Software Development :: Libraries",
|
||||
"Topic :: Software Development :: Libraries :: Python Modules",
|
||||
],
|
||||
package_dir={
|
||||
"pytorch_kfp_components":
|
||||
os.path.join(relative_directory, "pytorch_kfp_components")
|
||||
},
|
||||
packages=find_packages(where=relative_directory),
|
||||
)
|
||||
|
|
@ -0,0 +1,100 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# pylint: disable=W0221
|
||||
# pylint: disable=W0613
|
||||
# pylint: disable=W0223
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from pytorch_lightning.metrics import Accuracy
|
||||
|
||||
|
||||
class IrisClassification(pl.LightningModule):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(IrisClassification, self).__init__()
|
||||
|
||||
self.train_acc = Accuracy()
|
||||
self.val_acc = Accuracy()
|
||||
self.test_acc = Accuracy()
|
||||
self.args = kwargs
|
||||
|
||||
self.fc1 = nn.Linear(4, 10)
|
||||
self.fc2 = nn.Linear(10, 10)
|
||||
self.fc3 = nn.Linear(10, 3)
|
||||
self.cross_entropy_loss = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = F.relu(self.fc3(x))
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
"""
|
||||
Add model specific arguments like learning rate
|
||||
|
||||
:param parent_parser: Application specific parser
|
||||
|
||||
:return: Returns the augmented arugument parser
|
||||
"""
|
||||
parser = ArgumentParser(parents=[parent_parser], add_help=False)
|
||||
parser.add_argument(
|
||||
"--lr",
|
||||
type=float,
|
||||
default=0.01,
|
||||
metavar="LR",
|
||||
help="learning rate (default: 0.001)",
|
||||
)
|
||||
return parser
|
||||
|
||||
def configure_optimizers(self):
|
||||
return torch.optim.Adam(self.parameters(), self.args.get("lr", 0.01))
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
_, y_hat = torch.max(logits, dim=1)
|
||||
loss = self.cross_entropy_loss(logits, y)
|
||||
self.train_acc(y_hat, y)
|
||||
self.log(
|
||||
"train_acc",
|
||||
self.train_acc.compute(),
|
||||
on_step=False,
|
||||
on_epoch=True,
|
||||
)
|
||||
self.log("train_loss", loss)
|
||||
return {"loss": loss}
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
_, y_hat = torch.max(logits, dim=1)
|
||||
loss = F.cross_entropy(logits, y)
|
||||
self.val_acc(y_hat, y)
|
||||
self.log("val_acc", self.val_acc.compute())
|
||||
self.log("val_loss", loss, sync_dist=True)
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
logits = self.forward(x)
|
||||
_, y_hat = torch.max(logits, dim=1)
|
||||
self.test_acc(y_hat, y)
|
||||
self.log("test_acc", self.test_acc.compute())
|
||||
|
|
@ -0,0 +1,116 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
from pytorch_lightning import seed_everything
|
||||
from sklearn.datasets import load_iris
|
||||
from torch.utils.data import DataLoader, random_split, TensorDataset
|
||||
|
||||
|
||||
class IrisDataModule(pl.LightningDataModule):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initialization of inherited lightning data module
|
||||
"""
|
||||
super(IrisDataModule, self).__init__()
|
||||
|
||||
self.train_set = None
|
||||
self.val_set = None
|
||||
self.test_set = None
|
||||
self.args = kwargs
|
||||
|
||||
def prepare_data(self):
|
||||
"""
|
||||
Implementation of abstract class
|
||||
"""
|
||||
|
||||
def setup(self, stage=None):
|
||||
"""
|
||||
Downloads the data, parse it and split the data into train, test, validation data
|
||||
|
||||
:param stage: Stage - training or testing
|
||||
"""
|
||||
iris = load_iris()
|
||||
df = iris.data
|
||||
target = iris["target"]
|
||||
|
||||
data = torch.Tensor(df).float()
|
||||
labels = torch.Tensor(target).long()
|
||||
RANDOM_SEED = 42
|
||||
seed_everything(RANDOM_SEED)
|
||||
|
||||
data_set = TensorDataset(data, labels)
|
||||
self.train_set, self.val_set = random_split(data_set, [130, 20])
|
||||
self.train_set, self.test_set = random_split(self.train_set, [110, 20])
|
||||
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
"""
|
||||
Adds model specific arguments batch size and num workers
|
||||
|
||||
:param parent_parser: Application specific parser
|
||||
|
||||
:return: Returns the augmented arugument parser
|
||||
"""
|
||||
parser = ArgumentParser(parents=[parent_parser], add_help=False)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=128,
|
||||
metavar="N",
|
||||
help="input batch size for training (default: 16)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=3,
|
||||
metavar="N",
|
||||
help="number of workers (default: 3)",
|
||||
)
|
||||
return parser
|
||||
|
||||
def create_data_loader(self, dataset):
|
||||
"""
|
||||
Generic data loader function
|
||||
|
||||
:param data_set: Input data set
|
||||
|
||||
:return: Returns the constructed dataloader
|
||||
"""
|
||||
|
||||
return DataLoader(
|
||||
dataset,
|
||||
batch_size=self.args.get("batch_size", 16),
|
||||
num_workers=self.args.get("num_workers", 3),
|
||||
)
|
||||
|
||||
def train_dataloader(self):
|
||||
train_loader = self.create_data_loader(dataset=self.train_set)
|
||||
return train_loader
|
||||
|
||||
def val_dataloader(self):
|
||||
validation_loader = self.create_data_loader(dataset=self.val_set)
|
||||
return validation_loader
|
||||
|
||||
def test_dataloader(self):
|
||||
test_loader = self.create_data_loader(dataset=self.test_set)
|
||||
return test_loader
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
|
|
@ -0,0 +1,68 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import ast
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from ts.torch_handler.base_handler import BaseHandler
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class IRISClassifierHandler(BaseHandler):
|
||||
"""
|
||||
IRISClassifier handler class. This handler takes an input tensor and
|
||||
output the type of iris based on the input
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(IRISClassifierHandler, self).__init__()
|
||||
|
||||
def preprocess(self, data):
|
||||
"""
|
||||
preprocessing step - Reads the input array and converts it to tensor
|
||||
|
||||
:param data: Input to be passed through the layers for prediction
|
||||
|
||||
:return: output - Preprocessed input
|
||||
"""
|
||||
|
||||
input_data_str = data[0].get("data")
|
||||
if input_data_str is None:
|
||||
input_data_str = data[0].get("body")
|
||||
|
||||
input_data = input_data_str.decode("utf-8")
|
||||
input_tensor = torch.Tensor(ast.literal_eval(input_data))
|
||||
return input_tensor
|
||||
|
||||
def postprocess(self, inference_output):
|
||||
"""
|
||||
Does postprocess after inference to be returned to user
|
||||
|
||||
:param inference_output: Output of inference
|
||||
|
||||
:return: output - Output after post processing
|
||||
"""
|
||||
|
||||
predicted_idx = str(np.argmax(inference_output.cpu().detach().numpy()))
|
||||
|
||||
if self.mapping:
|
||||
return [self.mapping[str(predicted_idx)]]
|
||||
return [predicted_idx]
|
||||
|
||||
|
||||
_service = IRISClassifierHandler()
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import pytorch_lightning as pl
|
||||
|
||||
from pytorch_pipeline.components.trainer.component import Trainer
|
||||
|
||||
# Argument parser for user defined paths
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--tensorboard_root",
|
||||
type=str,
|
||||
default="output/tensorboard",
|
||||
help="Tensorboard Root path (default: output/tensorboard)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--checkpoint_dir",
|
||||
type=str,
|
||||
default="output",
|
||||
help="Path to save model checkpoints (default: output/train/models)",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
default="iris.pt",
|
||||
help="Name of the model to be saved as (default: iris.pt)",
|
||||
)
|
||||
|
||||
parser = pl.Trainer.add_argparse_args(parent_parser=parser)
|
||||
|
||||
args = vars(parser.parse_args())
|
||||
|
||||
if not args["max_epochs"]:
|
||||
max_epochs = 5
|
||||
else:
|
||||
max_epochs = args["max_epochs"]
|
||||
|
||||
args["max_epochs"] = max_epochs
|
||||
|
||||
trainer_args = {}
|
||||
|
||||
# Initiating the training process
|
||||
trainer = Trainer(
|
||||
module_file="iris_classification.py",
|
||||
data_module_file="iris_data_module.py",
|
||||
module_file_args=args,
|
||||
data_module_args=None,
|
||||
trainer_args=trainer_args,
|
||||
)
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
#!/bin/bash -ex
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
source_root=$(pwd)
|
||||
cd "$source_root/components/PyTorch/pytorch-kfp-components"
|
||||
|
||||
# Verify package build correctly
|
||||
python setup.py bdist_wheel clean
|
||||
|
||||
# Verify package can be installed and loaded correctly
|
||||
WHEEL_FILE=$(find "$source_root/components/PyTorch/pytorch-kfp-components/dist/" -name "pytorch_kfp_components*.whl")
|
||||
pip3 install --upgrade $WHEEL_FILE
|
||||
|
||||
python -c "import pytorch_kfp_components"
|
||||
|
||||
echo `pwd`
|
||||
|
||||
# Run lint and tests
|
||||
./tests/run_tests.sh
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
pip install -U tox virtualenv
|
||||
tox "$@"
|
||||
|
|
@ -0,0 +1,202 @@
|
|||
#!/usr/bin/env/python3
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit tests for trainer component."""
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
import pytest
|
||||
import pytorch_lightning
|
||||
|
||||
from pytorch_kfp_components.components.trainer.component import Trainer
|
||||
|
||||
dirname, filename = os.path.split(os.path.abspath(__file__))
|
||||
IRIS_DIR = os.path.join(dirname, "iris")
|
||||
sys.path.insert(0, IRIS_DIR)
|
||||
|
||||
MODULE_FILE_ARGS = {"lr": 0.1}
|
||||
TRAINER_ARGS = {"max_epochs": 5}
|
||||
DATA_MODULE_ARGS = {"num_workers": 2}
|
||||
|
||||
# pylint:disable=redefined-outer-name
|
||||
|
||||
|
||||
@pytest.fixture(scope="class")
|
||||
def trainer_params():
|
||||
trainer_params = {
|
||||
"module_file": "iris_classification.py",
|
||||
"data_module_file": "iris_data_module.py",
|
||||
"module_file_args": MODULE_FILE_ARGS,
|
||||
"data_module_args": DATA_MODULE_ARGS,
|
||||
"trainer_args": TRAINER_ARGS,
|
||||
}
|
||||
return trainer_params
|
||||
|
||||
|
||||
MANDATORY_ARGS = [
|
||||
"module_file",
|
||||
"data_module_file",
|
||||
]
|
||||
OPTIONAL_ARGS = ["module_file_args", "data_module_args", "trainer_args"]
|
||||
|
||||
DEFAULT_MODEL_NAME = "model_state_dict.pth"
|
||||
DEFAULT_SAVE_PATH = f"/tmp/{DEFAULT_MODEL_NAME}"
|
||||
|
||||
|
||||
def invoke_training(trainer_params): # pylint: disable=W0621
|
||||
"""This function invokes the training process."""
|
||||
trainer = Trainer(
|
||||
module_file=trainer_params["module_file"],
|
||||
data_module_file=trainer_params["data_module_file"],
|
||||
module_file_args=trainer_params["module_file_args"],
|
||||
trainer_args=trainer_params["trainer_args"],
|
||||
data_module_args=trainer_params["data_module_args"],
|
||||
)
|
||||
return trainer
|
||||
|
||||
|
||||
@pytest.mark.parametrize("mandatory_key", MANDATORY_ARGS)
|
||||
def test_mandatory_keys_type_check(trainer_params, mandatory_key):
|
||||
"""Tests the uncexpected 'type' of mandatory args.
|
||||
Args:
|
||||
mandatory_key : mandatory arguments for inivoking training
|
||||
"""
|
||||
test_input = ["input_path"]
|
||||
trainer_params[mandatory_key] = test_input
|
||||
expected_exception_msg = (
|
||||
f"{mandatory_key} must be of type <class 'str'> "
|
||||
f"but received as {type(test_input)}"
|
||||
)
|
||||
with pytest.raises(TypeError, match=expected_exception_msg):
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("optional_key", OPTIONAL_ARGS)
|
||||
def test_optional_keys_type_check(trainer_params, optional_key):
|
||||
"""Tests the unexpected 'type' of optional args.
|
||||
Args:
|
||||
optional_key: optional arguments for invoking training
|
||||
"""
|
||||
test_input = "test_input"
|
||||
trainer_params[optional_key] = test_input
|
||||
expected_exception_msg = (
|
||||
f"{optional_key} must be of type <class 'dict'> "
|
||||
f"but received as {type(test_input)}"
|
||||
)
|
||||
with pytest.raises(TypeError, match=expected_exception_msg):
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("input_key", MANDATORY_ARGS + ["module_file_args"])
|
||||
def test_mandatory_params(trainer_params, input_key):
|
||||
"""Test for empty mandatory arguments.
|
||||
Args:
|
||||
input_key: name of the mandatory arg for training
|
||||
"""
|
||||
trainer_params[input_key] = None
|
||||
expected_exception_msg = (
|
||||
f"{input_key} is not optional. "
|
||||
f"Received value: {trainer_params[input_key]}"
|
||||
)
|
||||
with pytest.raises(ValueError, match=expected_exception_msg):
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
|
||||
def test_data_module_args_optional(trainer_params):
|
||||
"""Test for empty optional argument : data module args"""
|
||||
trainer_params["data_module_args"] = None
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
assert os.path.exists(DEFAULT_SAVE_PATH)
|
||||
os.remove(DEFAULT_SAVE_PATH)
|
||||
|
||||
|
||||
def test_trainer_args_none(trainer_params):
|
||||
"""Test for empty trainer specific arguments."""
|
||||
trainer_params["trainer_args"] = None
|
||||
expected_exception_msg = r"trainer_args must be a dict"
|
||||
with pytest.raises(TypeError, match=expected_exception_msg):
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
|
||||
def test_training_success(trainer_params):
|
||||
"""Test the training success case with all required args."""
|
||||
trainer = invoke_training(trainer_params=trainer_params)
|
||||
assert os.path.exists(DEFAULT_SAVE_PATH)
|
||||
os.remove(DEFAULT_SAVE_PATH)
|
||||
assert hasattr(trainer, "ptl_trainer")
|
||||
assert isinstance(
|
||||
trainer.ptl_trainer, pytorch_lightning.trainer.trainer.Trainer
|
||||
)
|
||||
|
||||
|
||||
def test_training_success_with_custom_model_name(trainer_params):
|
||||
"""Test for successful training with custom model name."""
|
||||
tmp_dir = tempfile.mkdtemp()
|
||||
trainer_params["module_file_args"]["checkpoint_dir"] = tmp_dir
|
||||
trainer_params["module_file_args"]["model_name"] = "iris.pth"
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
assert "iris.pth" in os.listdir(tmp_dir)
|
||||
shutil.rmtree(tmp_dir)
|
||||
trainer_params["module_file_args"].pop("checkpoint_dir")
|
||||
trainer_params["module_file_args"].pop("model_name")
|
||||
|
||||
|
||||
def test_training_failure_with_empty_module_file_args(trainer_params):
|
||||
"""Test for successful training with empty module file args."""
|
||||
trainer_params["module_file_args"] = {}
|
||||
exception_msg = "module_file_args is not optional. Received value: {}"
|
||||
with pytest.raises(ValueError, match=exception_msg):
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
|
||||
def test_training_success_with_empty_trainer_args(trainer_params):
|
||||
"""Test for successful training with empty trainer args."""
|
||||
tmp_dir = tempfile.mkdtemp()
|
||||
trainer_params["module_file_args"]["max_epochs"] = 5
|
||||
trainer_params["module_file_args"]["checkpoint_dir"] = tmp_dir
|
||||
trainer_params["trainer_args"] = {}
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
assert DEFAULT_MODEL_NAME in os.listdir(tmp_dir)
|
||||
shutil.rmtree(tmp_dir)
|
||||
|
||||
|
||||
def test_training_success_with_empty_data_module_args(trainer_params):
|
||||
"""Test for successful training with empty data module args."""
|
||||
tmp_dir = tempfile.mkdtemp()
|
||||
trainer_params["module_file_args"]["checkpoint_dir"] = tmp_dir
|
||||
trainer_params["data_module_args"] = None
|
||||
invoke_training(trainer_params=trainer_params)
|
||||
|
||||
assert DEFAULT_MODEL_NAME in os.listdir(tmp_dir)
|
||||
shutil.rmtree(tmp_dir)
|
||||
|
||||
|
||||
#
|
||||
def test_trainer_output(trainer_params):
|
||||
"""Test for successful training with proper saving of training output."""
|
||||
tmp_dir = tempfile.mkdtemp()
|
||||
trainer_params["module_file_args"]["checkpoint_dir"] = tmp_dir
|
||||
trainer = invoke_training(trainer_params=trainer_params)
|
||||
|
||||
assert hasattr(trainer, "output_dict")
|
||||
assert trainer.output_dict is not None
|
||||
assert trainer.output_dict["model_save_path"] == os.path.join(
|
||||
tmp_dir, DEFAULT_MODEL_NAME
|
||||
)
|
||||
assert isinstance(
|
||||
trainer.output_dict["ptl_trainer"],
|
||||
pytorch_lightning.trainer.trainer.Trainer
|
||||
)
|
||||
|
|
@ -0,0 +1,44 @@
|
|||
[tox]
|
||||
envlist = clean,py38
|
||||
skip_missing_interpreters = true
|
||||
|
||||
[flake8]
|
||||
exclude =
|
||||
.git,
|
||||
.tox,
|
||||
.pytest_cache,
|
||||
__pycache__,
|
||||
dist,
|
||||
build,
|
||||
*.egg-info,
|
||||
.pylintrc
|
||||
|
||||
|
||||
[testenv]
|
||||
usedevelop = True
|
||||
install_command = pip install -U {opts} {packages}
|
||||
extras = tests
|
||||
testpaths = tests
|
||||
deps =
|
||||
pytest
|
||||
pytest-cov
|
||||
absl-py
|
||||
sklearn
|
||||
wget
|
||||
pandas
|
||||
minio
|
||||
|
||||
|
||||
depends =
|
||||
{py38}: clean
|
||||
report: py38
|
||||
commands =
|
||||
flake8 --version
|
||||
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
|
||||
pylint --rcfile=tox.ini --exit-zero pytorch_kfp_components
|
||||
py.test --cov=pytorch-kfp-components --cov-append --cov-report=term-missing -vvv -s {posargs}
|
||||
|
||||
[testenv:clean]
|
||||
deps = coverage
|
||||
skip_install = true
|
||||
commands = coverage erase
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
# PyTorch Pipeline Samples
|
||||
|
||||
This folder contains different PyTorch Kubeflow pipeline examples using the PyTorch KFP Components SDK.
|
||||
|
||||
1. CFar10 example for Computer Vision
|
||||
2. BERT example for NLP
|
||||
Loading…
Reference in New Issue