[Component] Add quota check in diagnose me component. (#3062)

* staging

* add quota check

* lint

* refactor and update component.yaml

* address comments
This commit is contained in:
Jiaxiao Zheng 2020-02-13 11:52:36 -08:00 committed by GitHub
parent 881cde2be1
commit e10e119af6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 374 additions and 230 deletions

View File

@ -12,13 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
from typing import Any, List, NamedTuple, Optional
def run_diagnose_me(
bucket: str, execution_mode: str, project_id:str , target_apis: str
bucket: str,
execution_mode: str,
project_id: str,
target_apis: str,
quota_check: Optional[List[Any]] = None,
) -> NamedTuple('Outputs', [('bucket', str), ('project_id', str)]):
""" Performs environment verification specific to this pipeline.
""" Performs environment verification specific to this pipeline.
args:
bucket:
@ -29,134 +33,199 @@ def run_diagnose_me(
If set to HALT_ON_ERROR will case any error to raise an exception.
This is intended to stop the data processing of a pipeline. Can set
to False to only report Errors/Warnings.
project_id:
GCP project ID which is assumed to be the project under which
current pod is executing.
target_apis:
String consisting of a comma separated list of apis to be verified.
quota_check:
List of entries describing how much quota is required. Each entry
has three fields: region, metric and quota_needed. All
string-typed.
Raises:
RuntimeError: If configuration is not setup properly and
HALT_ON_ERROR flag is set.
"""
# Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0'
# does not come with pip3 pre-installed.
import subprocess
subprocess.run(
['curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py'],
capture_output=True)
subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'],
capture_output=True)
subprocess.run(['python3', 'get-pip.py'], capture_output=True)
subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'],
capture_output=True)
# Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0'
# does not come with pip3 pre-installed.
import subprocess
subprocess.run([
'curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py'
],
capture_output=True)
subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'],
capture_output=True)
subprocess.run(['python3', 'get-pip.py'], capture_output=True)
subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'],
capture_output=True)
import sys
from typing import List, Text
import os
from kfp.cli.diagnose_me import gcp
from kfp.cli.diagnose_me import utility
import json as json_library
import sys
from kfp.cli.diagnose_me import gcp
config_error_observed = False
config_error_observed = False
# Get the project ID
# from project configuration
project_config = gcp.get_gcp_configuration(
gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False)
if not project_config.has_error:
auth_project_id = project_config.parsed_output['core']['project']
print('GCP credentials are configured with access to project: %s ...\n' % (project_id))
print('Following account(s) are active under this pipeline:\n')
subprocess.run(['gcloud', 'auth', 'list','--format','json'])
print('\n')
else:
quota_list = gcp.get_gcp_configuration(
gcp.Commands.GET_QUOTAS, human_readable=False
)
if quota_list.has_error:
print('Failed to retrieve project quota with error %s\n' % (quota_list.stderr))
config_error_observed = True
else:
# Check quota.
quota_dict = {} # Mapping from region to dict[metric, available]
for region_quota in quota_list:
quota_dict[region_quota['name']] = {}
for quota in region_quota['quotas']:
quota_dict[region_quota['name']][quota['metric']
] = quota['limit'] - quota['usage']
quota_check = [] or quota_check
for single_check in quota_check:
if single_check['region'] not in quota_dict:
print(
'Project configuration is not accessible with error %s\n' %
(project_config.stderr),
file=sys.stderr)
'Regional quota for %s does not exist in current project.\n' %
(single_check['region'])
)
config_error_observed = True
else:
if quota_dict[single_check['region']][single_check['metric']
] < single_check['quota_needed']:
print(
'Insufficient quota observed for %s at %s: %s is needed but only %s is available.\n'
% (
single_check['metric'], single_check['region'],
str(single_check['quota_needed']
), str(quota_dict[single_check['region']][single_check['metric']])
)
)
config_error_observed = True
if auth_project_id != project_id:
print(
'User provided project ID %s does not match the configuration %s\n' %
(project_id,auth_project_id), file=sys.stderr)
config_error_observed = True
# Get project buckets
get_project_bucket_results = gcp.get_gcp_configuration(
gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False)
if get_project_bucket_results.has_error:
print(
'could not retrieve project buckets with error: %s' %
(get_project_bucket_results.stderr),
file=sys.stderr)
config_error_observed = True
# Get the root of the user provided bucket i.e. gs://root.
bucket_root = '/'.join(bucket.split('/')[0:3])
# Get the project ID
# from project configuration
project_config = gcp.get_gcp_configuration(
gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False
)
if not project_config.has_error:
auth_project_id = project_config.parsed_output['core']['project']
print(
'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' %
(bucket))
'GCP credentials are configured with access to project: %s ...\n' %
(project_id)
)
print('Following account(s) are active under this pipeline:\n')
subprocess.run(['gcloud', 'auth', 'list', '--format', 'json'])
print('\n')
else:
print(
'Project configuration is not accessible with error %s\n' %
(project_config.stderr),
file=sys.stderr
)
config_error_observed = True
if bucket_root in get_project_bucket_results.json_output:
print('Provided bucket \n %s\nis accessible within the project\n %s\n' %
(bucket, project_id))
if auth_project_id != project_id:
print(
'User provided project ID %s does not match the configuration %s\n' %
(project_id, auth_project_id),
file=sys.stderr
)
config_error_observed = True
else:
print('Could not find the bucket %s in project %s' % (bucket, project_id) +
'Please verify that you have provided the correct GCS bucket name.\n' +
'Only the following buckets are visible in this project:\n%s' %
(get_project_bucket_results.parsed_output),
file=sys.stderr)
config_error_observed = True
# Get project buckets
get_project_bucket_results = gcp.get_gcp_configuration(
gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False
)
# Verify APIs that are required are enabled
api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS)
if get_project_bucket_results.has_error:
print(
'could not retrieve project buckets with error: %s' %
(get_project_bucket_results.stderr),
file=sys.stderr
)
config_error_observed = True
api_status = {}
# Get the root of the user provided bucket i.e. gs://root.
bucket_root = '/'.join(bucket.split('/')[0:3])
if api_config_results.has_error:
print('could not retrieve API status with error: %s' %
(api_config_results.stderr),file=sys.stderr)
config_error_observed = True
print(
'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' %
(bucket)
)
print('Checking APIs status ...')
for item in api_config_results.parsed_output:
api_status[item['config']['name']] = item['state']
# printing the results in stdout for logging purposes
print('%s %s' % (item['config']['name'], item['state']))
if bucket_root in get_project_bucket_results.json_output:
print(
'Provided bucket \n %s\nis accessible within the project\n %s\n' %
(bucket, project_id)
)
# Check if target apis are enabled
api_check_results = True
for api in target_apis.replace(' ', '').split(','):
if 'ENABLED' != api_status.get(api, 'DISABLED'):
api_check_results = False
print(
'API \"%s\" is not accessible or not enabled. To enable this api go to ' % (api) +
'https://console.cloud.google.com/apis/library/%s?project=%s' %
(api, project_id),file=sys.stderr)
config_error_observed = True
else:
print(
'Could not find the bucket %s in project %s' % (bucket, project_id) +
'Please verify that you have provided the correct GCS bucket name.\n' +
'Only the following buckets are visible in this project:\n%s' %
(get_project_bucket_results.parsed_output),
file=sys.stderr
)
config_error_observed = True
if 'HALT_ON_ERROR' in execution_mode and config_error_observed:
raise RuntimeError('There was an error in your environment configuration.\n'+
'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n'+
'\n'+
'We highly recommend that you recreate the cluster and check "Allow access ..." \n'+
'checkbox during cluster creation to have the cluster configured automatically.\n'+
'For more information on this and other troubleshooting instructions refer to\n'+
'our troubleshooting guide.\n'+
'\n'+
'If you have intentionally modified the cluster configuration, you may\n'+
'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n')
# Verify APIs that are required are enabled
api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS)
return (project_id, bucket)
api_status = {}
if api_config_results.has_error:
print(
'could not retrieve API status with error: %s' %
(api_config_results.stderr),
file=sys.stderr
)
config_error_observed = True
print('Checking APIs status ...')
for item in api_config_results.parsed_output:
api_status[item['config']['name']] = item['state']
# printing the results in stdout for logging purposes
print('%s %s' % (item['config']['name'], item['state']))
# Check if target apis are enabled
api_check_results = True
for api in target_apis.replace(' ', '').split(','):
if 'ENABLED' != api_status.get(api, 'DISABLED'):
api_check_results = False
print(
'API \"%s\" is not accessible or not enabled. To enable this api go to '
% (api) +
'https://console.cloud.google.com/apis/library/%s?project=%s' %
(api, project_id),
file=sys.stderr
)
config_error_observed = True
if 'HALT_ON_ERROR' in execution_mode and config_error_observed:
raise RuntimeError(
'There was an error in your environment configuration.\n' +
'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n'
+ '\n' +
'We highly recommend that you recreate the cluster and check "Allow access ..." \n'
+
'checkbox during cluster creation to have the cluster configured automatically.\n'
+
'For more information on this and other troubleshooting instructions refer to\n'
+ 'our troubleshooting guide.\n' + '\n' +
'If you have intentionally modified the cluster configuration, you may\n'
+
'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n'
)
return (project_id, bucket)
if __name__ == '__main__':
import kfp.components as comp
import kfp.components as comp
comp.func_to_container_op(
run_diagnose_me,
base_image='google/cloud-sdk:279.0.0',
output_component_file='component.yaml',
)
comp.func_to_container_op(
run_diagnose_me,
base_image='google/cloud-sdk:279.0.0',
output_component_file='component.yaml',
)

View File

@ -1,9 +1,39 @@
name: Run diagnose me
description: |-
Performs environment verification specific to this pipeline.
args:
bucket:
string name of the bucket to be checked. Must be of the format
gs://bucket_root/any/path/here/is/ignored where any path beyond root
is ignored.
execution_mode:
If set to HALT_ON_ERROR will case any error to raise an exception.
This is intended to stop the data processing of a pipeline. Can set
to False to only report Errors/Warnings.
project_id:
GCP project ID which is assumed to be accessible from the pod.
target_apis:
String consisting of a comma separated list of apis to be verified.
quota_check:
List of entries describing how much quota is required. Each entry
has three fields: region, metric and quota_needed. All
string-typed.
Raises:
RuntimeError: If configuration is not setup properly and
HALT_ON_ERROR flag is set.
inputs:
- {name: bucket, type: String}
- {name: execution_mode, type: String}
- {name: project_id, type: String}
- {name: target_apis, type: String}
- {name: quota_check, type: 'typing.Union[typing.List[typing.Any], NoneType]', optional: true}
outputs:
- {name: bucket, type: String}
- {name: project_id, type: String}
implementation:
container:
image: google/cloud-sdk:279.0.0
command:
- python3
- -u
@ -12,9 +42,13 @@ implementation:
from typing import NamedTuple
def run_diagnose_me(
bucket: str, execution_mode: str, project_id:str , target_apis: str
bucket: str,
execution_mode: str,
project_id: str,
target_apis: str,
quota_check: Optional[List[Any]] = None,
) -> NamedTuple('Outputs', [('bucket', str), ('project_id', str)]):
""" Performs environment verification specific to this pipeline.
""" Performs environment verification specific to this pipeline.
args:
bucket:
@ -25,127 +59,185 @@ implementation:
If set to HALT_ON_ERROR will case any error to raise an exception.
This is intended to stop the data processing of a pipeline. Can set
to False to only report Errors/Warnings.
project_id:
GCP project ID which is assumed to be accessible from the pod.
target_apis:
String consisting of a comma separated list of apis to be verified.
quota_check:
List of entries describing how much quota is required. Each entry
has three fields: region, metric and quota_needed. All
string-typed.
Raises:
RuntimeError: If configuration is not setup properly and
HALT_ON_ERROR flag is set.
"""
# Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0'
# does not come with pip3 pre-installed.
import subprocess
subprocess.run(
['curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py'],
capture_output=True)
subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'],
capture_output=True)
subprocess.run(['python3', 'get-pip.py'], capture_output=True)
subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'],
capture_output=True)
# Installing pip3 and kfp, since the base image 'google/cloud-sdk:279.0.0'
# does not come with pip3 pre-installed.
import subprocess
subprocess.run([
'curl', 'https://bootstrap.pypa.io/get-pip.py', '-o', 'get-pip.py'
],
capture_output=True)
subprocess.run(['apt-get', 'install', 'python3-distutils', '--yes'],
capture_output=True)
subprocess.run(['python3', 'get-pip.py'], capture_output=True)
subprocess.run(['python3', '-m', 'pip', 'install', 'kfp>=0.1.31', '--quiet'],
capture_output=True)
import sys
from typing import List, Text
import os
from kfp.cli.diagnose_me import gcp
from kfp.cli.diagnose_me import utility
import json as json_library
import sys
from kfp.cli.diagnose_me import gcp
config_error_observed = False
config_error_observed = False
# Get the project ID
# from project configuration
project_config = gcp.get_gcp_configuration(
gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False)
if not project_config.has_error:
auth_project_id = project_config.parsed_output['core']['project']
print('GCP credentials are configured with access to project: %s ...\n' % (project_id))
print('Following account(s) are active under this pipeline:\n')
subprocess.run(['gcloud', 'auth', 'list','--format','json'])
print('\n')
quota_list = gcp.get_gcp_configuration(
gcp.Commands.GET_QUOTAS, human_readable=False
)
quota_dict = {} # Mapping from region to dict[metric, available]
for region_quota in quota_list:
quota_dict[region_quota['name']] = {}
for quota in region_quota['quotas']:
quota_dict[region_quota['name']][quota['metric']
] = quota['limit'] - quota['usage']
quota_check = [] or quota_check
for single_check in quota_check:
if single_check['region'] not in quota_dict:
print(
'Regional quota for %s does not exist in current project' %
(single_check['region'])
)
config_error_observed = True
else:
if quota_dict[single_check['region']][single_check['metric']
] < single_check['quota_needed']:
print(
'Project configuration is not accessible with error %s\n' %
(project_config.stderr),
file=sys.stderr)
'Insufficient quota observed for %s at %s: %s is needed but only %s is available'
% (
single_check['metric'], single_check['region'],
str(single_check['quota_needed']
), str(quota_dict[single_check['region']][single_check['metric']])
)
)
config_error_observed = True
if auth_project_id != project_id:
print(
'User provided project ID %s does not match the configuration %s\n' %
(project_id,auth_project_id), file=sys.stderr)
config_error_observed = True
# Get project buckets
get_project_bucket_results = gcp.get_gcp_configuration(
gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False)
if get_project_bucket_results.has_error:
print(
'could not retrieve project buckets with error: %s' %
(get_project_bucket_results.stderr),
file=sys.stderr)
config_error_observed = True
# Get the root of the user provided bucket i.e. gs://root.
bucket_root = '/'.join(bucket.split('/')[0:3])
# Get the project ID
# from project configuration
project_config = gcp.get_gcp_configuration(
gcp.Commands.GET_GCLOUD_DEFAULT, human_readable=False
)
if not project_config.has_error:
auth_project_id = project_config.parsed_output['core']['project']
print(
'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' %
(bucket))
'GCP credentials are configured with access to project: %s ...\n' %
(project_id)
)
print('Following account(s) are active under this pipeline:\n')
subprocess.run(['gcloud', 'auth', 'list', '--format', 'json'])
print('\n')
else:
print(
'Project configuration is not accessible with error %s\n' %
(project_config.stderr),
file=sys.stderr
)
config_error_observed = True
if bucket_root in get_project_bucket_results.json_output:
print('Provided bucket \n %s\nis accessible within the project\n %s\n' %
(bucket, project_id))
if auth_project_id != project_id:
print(
'User provided project ID %s does not match the configuration %s\n' %
(project_id, auth_project_id),
file=sys.stderr
)
config_error_observed = True
else:
print('Could not find the bucket %s in project %s' % (bucket, project_id) +
'Please verify that you have provided the correct GCS bucket name.\n' +
'Only the following buckets are visible in this project:\n%s' %
(get_project_bucket_results.parsed_output),
file=sys.stderr)
config_error_observed = True
# Get project buckets
get_project_bucket_results = gcp.get_gcp_configuration(
gcp.Commands.GET_STORAGE_BUCKETS, human_readable=False
)
# Verify APIs that are required are enabled
api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS)
if get_project_bucket_results.has_error:
print(
'could not retrieve project buckets with error: %s' %
(get_project_bucket_results.stderr),
file=sys.stderr
)
config_error_observed = True
api_status = {}
# Get the root of the user provided bucket i.e. gs://root.
bucket_root = '/'.join(bucket.split('/')[0:3])
if api_config_results.has_error:
print('could not retrieve API status with error: %s' %
(api_config_results.stderr),file=sys.stderr)
config_error_observed = True
print(
'Checking to see if the provided GCS bucket\n %s\nis accessible ...\n' %
(bucket)
)
print('Checking APIs status ...')
for item in api_config_results.parsed_output:
api_status[item['config']['name']] = item['state']
# printing the results in stdout for logging purposes
print('%s %s' % (item['config']['name'], item['state']))
if bucket_root in get_project_bucket_results.json_output:
print(
'Provided bucket \n %s\nis accessible within the project\n %s\n' %
(bucket, project_id)
)
# Check if target apis are enabled
api_check_results = True
for api in target_apis.replace(' ', '').split(','):
if 'ENABLED' != api_status.get(api, 'DISABLED'):
api_check_results = False
print(
'API \"%s\" is not accessible or not enabled. To enable this api go to ' % (api) +
'https://console.cloud.google.com/apis/library/%s?project=%s' %
(api, project_id),file=sys.stderr)
config_error_observed = True
else:
print(
'Could not find the bucket %s in project %s' % (bucket, project_id) +
'Please verify that you have provided the correct GCS bucket name.\n' +
'Only the following buckets are visible in this project:\n%s' %
(get_project_bucket_results.parsed_output),
file=sys.stderr
)
config_error_observed = True
if 'HALT_ON_ERROR' in execution_mode and config_error_observed:
raise RuntimeError('There was an error in your environment configuration.\n'+
'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n'+
'\n'+
'We highly recommend that you recreate the cluster and check "Allow access ..." \n'+
'checkbox during cluster creation to have the cluster configured automatically.\n'+
'For more information on this and other troubleshooting instructions refer to\n'+
'our troubleshooting guide.\n'+
'\n'+
'If you have intentionally modified the cluster configuration, you may\n'+
'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n')
# Verify APIs that are required are enabled
api_config_results = gcp.get_gcp_configuration(gcp.Commands.GET_APIS)
return (project_id, bucket)
api_status = {}
if api_config_results.has_error:
print(
'could not retrieve API status with error: %s' %
(api_config_results.stderr),
file=sys.stderr
)
config_error_observed = True
print('Checking APIs status ...')
for item in api_config_results.parsed_output:
api_status[item['config']['name']] = item['state']
# printing the results in stdout for logging purposes
print('%s %s' % (item['config']['name'], item['state']))
# Check if target apis are enabled
api_check_results = True
for api in target_apis.replace(' ', '').split(','):
if 'ENABLED' != api_status.get(api, 'DISABLED'):
api_check_results = False
print(
'API \"%s\" is not accessible or not enabled. To enable this api go to '
% (api) +
'https://console.cloud.google.com/apis/library/%s?project=%s' %
(api, project_id),
file=sys.stderr
)
config_error_observed = True
if 'HALT_ON_ERROR' in execution_mode and config_error_observed:
raise RuntimeError(
'There was an error in your environment configuration.\n' +
'Note that resolving such issues generally require a deep knowledge of Kubernetes.\n'
+ '\n' +
'We highly recommend that you recreate the cluster and check "Allow access ..." \n'
+
'checkbox during cluster creation to have the cluster configured automatically.\n'
+
'For more information on this and other troubleshooting instructions refer to\n'
+ 'our troubleshooting guide.\n' + '\n' +
'If you have intentionally modified the cluster configuration, you may\n'
+
'bypass this error by removing the execution_mode HALT_ON_ERROR flag.\n'
)
return (project_id, bucket)
def _serialize_str(str_value: str) -> str:
if not isinstance(str_value, str):
@ -153,11 +245,12 @@ implementation:
return str_value
import argparse
_parser = argparse.ArgumentParser(prog='Run diagnose me', description='Performs environment verification specific to this pipeline.\n\n args:\n bucket:\n string name of the bucket to be checked. Must be of the format\n gs://bucket_root/any/path/here/is/ignored where any path beyond root\n is ignored.\n execution_mode:\n If set to HALT_ON_ERROR will case any error to raise an exception.\n This is intended to stop the data processing of a pipeline. Can set\n to False to only report Errors/Warnings.\n target_apis:\n String consisting of a comma separated list of apis to be verified.\n Raises:\n RuntimeError: If configuration is not setup properly and\n HALT_ON_ERROR flag is set.')
_parser = argparse.ArgumentParser(prog='Run diagnose me', description='Performs environment verification specific to this pipeline.\n\n args:\n bucket:\n string name of the bucket to be checked. Must be of the format\n gs://bucket_root/any/path/here/is/ignored where any path beyond root\n is ignored.\n execution_mode:\n If set to HALT_ON_ERROR will case any error to raise an exception.\n This is intended to stop the data processing of a pipeline. Can set\n to False to only report Errors/Warnings.\n project_id:\n GCP project ID which is assumed to be accessible from the pod.\n target_apis:\n String consisting of a comma separated list of apis to be verified.\n quota_check:\n List of entries describing how much quota is required. Each entry\n has three fields: region, metric and quota_needed. All\n string-typed.\n Raises:\n RuntimeError: If configuration is not setup properly and\n HALT_ON_ERROR flag is set.')
_parser.add_argument("--bucket", dest="bucket", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--execution-mode", dest="execution_mode", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--project-id", dest="project_id", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--target-apis", dest="target_apis", type=str, required=True, default=argparse.SUPPRESS)
_parser.add_argument("--quota-check", dest="quota_check", type=str, required=False, default=argparse.SUPPRESS)
_parser.add_argument("----output-paths", dest="_output_paths", type=str, nargs=2)
_parsed_args = vars(_parser.parse_args())
_output_files = _parsed_args.pop("_output_paths", [])
@ -190,29 +283,11 @@ implementation:
- {inputValue: project_id}
- --target-apis
- {inputValue: target_apis}
- if:
cond: {isPresent: quota_check}
then:
- --quota-check
- {inputValue: quota_check}
- '----output-paths'
- {outputPath: bucket}
- {outputPath: project_id}
image: google/cloud-sdk:279.0.0
description: |-
Performs environment verification specific to this pipeline.
args:
bucket:
string name of the bucket to be checked. Must be of the format
gs://bucket_root/any/path/here/is/ignored where any path beyond root
is ignored.
execution_mode:
If set to HALT_ON_ERROR will case any error to raise an exception.
This is intended to stop the data processing of a pipeline. Can set
to False to only report Errors/Warnings.
target_apis:
String consisting of a comma separated list of apis to be verified.
Raises:
RuntimeError: If configuration is not setup properly and
HALT_ON_ERROR flag is set.
inputs:
- {name: bucket, type: String}
- {name: execution_mode, type: String}
- {name: project_id, type: String}
- {name: target_apis, type: String}