feat(components): Add Feature Attribution components to _implementation/model_evaluation. Add LLM Eval text generation and text classification pipelines to preview namespace init file

PiperOrigin-RevId: 557226606
This commit is contained in:
Jason Dai 2023-08-15 13:11:28 -07:00 committed by Google Cloud Pipeline Components maintainers
parent ff2e002157
commit f454a86177
9 changed files with 455 additions and 5 deletions

View File

@ -19,25 +19,31 @@ from google_cloud_pipeline_components._implementation.model_evaluation.data_samp
from google_cloud_pipeline_components._implementation.model_evaluation.dataset_preprocessor.component import dataset_preprocessor_error_analysis as EvaluationDatasetPreprocessorOp from google_cloud_pipeline_components._implementation.model_evaluation.dataset_preprocessor.component import dataset_preprocessor_error_analysis as EvaluationDatasetPreprocessorOp
from google_cloud_pipeline_components._implementation.model_evaluation.error_analysis_annotation.component import error_analysis_annotation as ErrorAnalysisAnnotationOp from google_cloud_pipeline_components._implementation.model_evaluation.error_analysis_annotation.component import error_analysis_annotation as ErrorAnalysisAnnotationOp
from google_cloud_pipeline_components._implementation.model_evaluation.evaluated_annotation.component import evaluated_annotation as EvaluatedAnnotationOp from google_cloud_pipeline_components._implementation.model_evaluation.evaluated_annotation.component import evaluated_annotation as EvaluatedAnnotationOp
from google_cloud_pipeline_components._implementation.model_evaluation.feature_attribution.feature_attribution_component import feature_attribution as ModelEvaluationFeatureAttributionOp
from google_cloud_pipeline_components._implementation.model_evaluation.feature_attribution.feature_attribution_graph_component import feature_attribution_graph_component as FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components._implementation.model_evaluation.feature_extractor.component import feature_extractor_error_analysis as FeatureExtractorOp from google_cloud_pipeline_components._implementation.model_evaluation.feature_extractor.component import feature_extractor_error_analysis as FeatureExtractorOp
from google_cloud_pipeline_components._implementation.model_evaluation.import_evaluated_annotation.component import evaluated_annotation_import as ModelImportEvaluatedAnnotationOp from google_cloud_pipeline_components._implementation.model_evaluation.import_evaluated_annotation.component import evaluated_annotation_import as ModelImportEvaluatedAnnotationOp
from google_cloud_pipeline_components._implementation.model_evaluation.import_evaluation.component import model_evaluation_import as ModelImportEvaluationOp from google_cloud_pipeline_components._implementation.model_evaluation.import_evaluation.component import model_evaluation_import as ModelImportEvaluationOp
from google_cloud_pipeline_components._implementation.model_evaluation.llm_classification_postprocessor.component import llm_classification_predictions_postprocessor_graph_component as LLMEvaluationClassificationPredictionsPostprocessorOp from google_cloud_pipeline_components._implementation.model_evaluation.llm_classification_postprocessor.component import llm_classification_predictions_postprocessor_graph_component as LLMEvaluationClassificationPredictionsPostprocessorOp
from google_cloud_pipeline_components._implementation.model_evaluation.llm_evaluation.component import model_evaluation_text_generation as LLMEvaluationTextGenerationOp from google_cloud_pipeline_components._implementation.model_evaluation.llm_evaluation.component import model_evaluation_text_generation as LLMEvaluationTextGenerationOp
from google_cloud_pipeline_components._implementation.model_evaluation.llm_safety_bias.component import llm_safety_bias_metrics as LLMSafetyBiasMetricsOp from google_cloud_pipeline_components._implementation.model_evaluation.llm_safety_bias.component import llm_safety_bias_metrics as LLMSafetyBiasMetricsOp
from google_cloud_pipeline_components._implementation.model_evaluation.llm_safety_bias.evaluation_llm_safety_bias_pipeline import evaluation_llm_safety_bias_pipeline
from google_cloud_pipeline_components._implementation.model_evaluation.target_field_data_remover.component import target_field_data_remover as TargetFieldDataRemoverOp from google_cloud_pipeline_components._implementation.model_evaluation.target_field_data_remover.component import target_field_data_remover as TargetFieldDataRemoverOp
__all__ = [ __all__ = [
'evaluation_llm_safety_bias_pipeline',
'EvaluationDataSamplerOp', 'EvaluationDataSamplerOp',
'EvaluationDatasetPreprocessorOp', 'EvaluationDatasetPreprocessorOp',
'ErrorAnalysisAnnotationOp', 'ErrorAnalysisAnnotationOp',
'EvaluatedAnnotationOp', 'EvaluatedAnnotationOp',
'FeatureAttributionGraphComponentOp',
'FeatureExtractorOp', 'FeatureExtractorOp',
'LLMEvaluationClassificationPredictionsPostprocessorOp', 'LLMEvaluationClassificationPredictionsPostprocessorOp',
'LLMEvaluationTextGenerationOp', 'LLMEvaluationTextGenerationOp',
'LLMSafetyBiasMetricsOp',
'ModelEvaluationFeatureAttributionOp',
'ModelImportEvaluatedAnnotationOp', 'ModelImportEvaluatedAnnotationOp',
'ModelImportEvaluationOp', 'ModelImportEvaluationOp',
'LLMSafetyBiasMetricsOp',
'TargetFieldDataRemoverOp', 'TargetFieldDataRemoverOp',
] ]

View File

@ -0,0 +1,14 @@
# Copyright 2023 The Kubeflow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Pipeline Evaluation Feature Extractor Component."""

View File

@ -0,0 +1,179 @@
# Copyright 2023 The Kubeflow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model_evaluation import version
from google_cloud_pipeline_components.types.artifact_types import BQTable
from kfp.dsl import Artifact
from kfp.dsl import ConcatPlaceholder
from kfp.dsl import container_component
from kfp.dsl import ContainerSpec
from kfp.dsl import IfPresentPlaceholder
from kfp.dsl import Input
from kfp.dsl import Metrics
from kfp.dsl import Output
from kfp.dsl import OutputPath
from kfp.dsl import PIPELINE_JOB_ID_PLACEHOLDER
from kfp.dsl import PIPELINE_ROOT_PLACEHOLDER
from kfp.dsl import PIPELINE_TASK_ID_PLACEHOLDER
@container_component
def feature_attribution(
gcp_resources: OutputPath(str),
feature_attributions: Output[Metrics],
problem_type: str,
location: str = 'us-central1',
predictions_format: str = 'jsonl',
predictions_gcs_source: Input[Artifact] = None,
predictions_bigquery_source: Input[BQTable] = None,
dataflow_service_account: str = '',
dataflow_disk_size_gb: int = 50,
dataflow_machine_type: str = 'n1-standard-4',
dataflow_workers_num: int = 1,
dataflow_max_workers_num: int = 5,
dataflow_subnetwork: str = '',
dataflow_use_public_ips: bool = True,
encryption_spec_key_name: str = '',
force_runner_mode: str = '',
project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
):
# fmt: off
"""Compute feature attribution on a trained model's batch explanation
results.
Creates a dataflow job with Apache Beam and TFMA to compute feature
attributions. Will compute feature attribution for every target label if
possible, typically possible for AutoML Classification models.
Args:
location: Location running feature attribution. If not
set, defaulted to `us-central1`.
problem_type: Problem type of the pipeline: one of `classification`,
`regression` and `forecasting`.
predictions_format: The file format for the batch
prediction results. `jsonl`, `csv`, and `bigquery` are the allowed
formats, from Vertex Batch Prediction. If not set, defaulted to `jsonl`.
predictions_gcs_source: An artifact with its
URI pointing toward a GCS directory with prediction or explanation files
to be used for this evaluation. For prediction results, the files should
be named "prediction.results-*" or "predictions_". For explanation
results, the files should be named "explanation.results-*".
predictions_bigquery_source: BigQuery table
with prediction or explanation data to be used for this evaluation. For
prediction results, the table column should be named "predicted_*".
dataflow_service_account: Service account to run the
dataflow job. If not set, dataflow will use the default worker service
account. For more details, see
https://cloud.google.com/dataflow/docs/concepts/security-and-permissions#default_worker_service_account
dataflow_disk_size_gb: The disk size (in GB) of the machine
executing the evaluation run. If not set, defaulted to `50`.
dataflow_machine_type: The machine type executing the
evaluation run. If not set, defaulted to `n1-standard-4`.
dataflow_workers_num: The number of workers executing the
evaluation run. If not set, defaulted to `10`.
dataflow_max_workers_num: The max number of workers
executing the evaluation run. If not set, defaulted to `25`.
dataflow_subnetwork: Dataflow's fully qualified subnetwork
name, when empty the default subnetwork will be used. More details:
https://cloud.google.com/dataflow/docs/guides/specifying-networks#example_network_and_subnetwork_specifications
dataflow_use_public_ips: Specifies whether Dataflow
workers use public IP addresses.
encryption_spec_key_name: Customer-managed encryption key
for the Dataflow job. If this is set, then all resources created by the
Dataflow job will be encrypted with the provided encryption key.
force_runner_mode: Flag to choose Beam runner. Valid options are `DirectRunner`
and `Dataflow`.
project: Project to run feature attribution container. Defaults to the project in which the PipelineJob is run.
Returns:
gcs_output_directory: JsonArray of the downsampled dataset GCS
output.
bigquery_output_table: String of the downsampled dataset BigQuery
output.
gcp_resources: Serialized gcp_resources proto tracking the dataflow
job. For more details, see
https://github.com/kubeflow/pipelines/blob/master/components/google-cloud/google_cloud_pipeline_components/proto/README.md.
"""
# fmt: on
return ContainerSpec(
image=version.EVAL_IMAGE_TAG,
command=[
'python3',
'/main.py',
],
args=[
'--task',
'explanation',
'--setup_file',
'/setup.py',
'--project_id',
project,
'--location',
location,
'--problem_type',
problem_type,
'--root_dir',
f'{PIPELINE_ROOT_PLACEHOLDER}/{PIPELINE_JOB_ID_PLACEHOLDER}-{PIPELINE_TASK_ID_PLACEHOLDER}',
'--batch_prediction_format',
predictions_format,
IfPresentPlaceholder(
input_name='predictions_gcs_source',
then=[
'--batch_prediction_gcs_source',
predictions_gcs_source.uri,
],
),
IfPresentPlaceholder(
input_name='predictions_bigquery_source',
then=[
'--batch_prediction_bigquery_source',
ConcatPlaceholder([
'bq://',
predictions_bigquery_source.metadata['projectId'],
'.',
predictions_bigquery_source.metadata['datasetId'],
'.',
predictions_bigquery_source.metadata['tableId'],
]),
],
),
'--dataflow_job_prefix',
f'evaluation-feautre-attribution-{PIPELINE_JOB_ID_PLACEHOLDER}-{PIPELINE_TASK_ID_PLACEHOLDER}',
'--dataflow_service_account',
dataflow_service_account,
'--dataflow_disk_size',
dataflow_disk_size_gb,
'--dataflow_machine_type',
dataflow_machine_type,
'--dataflow_workers_num',
dataflow_workers_num,
'--dataflow_max_workers_num',
dataflow_max_workers_num,
'--dataflow_subnetwork',
dataflow_subnetwork,
'--dataflow_use_public_ips',
dataflow_use_public_ips,
'--kms_key_name',
encryption_spec_key_name,
'--force_runner_mode',
force_runner_mode,
'--gcs_output_path',
feature_attributions.path,
'--gcp_resources',
gcp_resources,
'--executor_input',
'{{$}}',
],
)

View File

@ -0,0 +1,247 @@
# Copyright 2023 The Kubeflow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Graph Component for feature attribution evaluation."""
from typing import List, NamedTuple
from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model_evaluation.data_sampler.component import evaluation_data_sampler as EvaluationDataSamplerOp
from google_cloud_pipeline_components._implementation.model_evaluation.feature_attribution.feature_attribution_component import feature_attribution as ModelEvaluationFeatureAttributionOp
from google_cloud_pipeline_components.types.artifact_types import VertexModel
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
import kfp
@kfp.dsl.pipeline(name='feature-attribution-graph-component')
def feature_attribution_graph_component( # pylint: disable=dangerous-default-value
location: str,
prediction_type: str,
vertex_model: VertexModel,
batch_predict_instances_format: str,
batch_predict_gcs_destination_output_uri: str,
batch_predict_gcs_source_uris: List[str] = [], # pylint: disable=g-bare-generic
batch_predict_bigquery_source_uri: str = '',
batch_predict_predictions_format: str = 'jsonl',
batch_predict_bigquery_destination_output_uri: str = '',
batch_predict_machine_type: str = 'n1-standard-16',
batch_predict_starting_replica_count: int = 5,
batch_predict_max_replica_count: int = 10,
batch_predict_explanation_metadata: dict = {}, # pylint: disable=g-bare-generic
batch_predict_explanation_parameters: dict = {}, # pylint: disable=g-bare-generic
batch_predict_explanation_data_sample_size: int = 10000,
batch_predict_accelerator_type: str = '',
batch_predict_accelerator_count: int = 0,
dataflow_machine_type: str = 'n1-standard-4',
dataflow_max_num_workers: int = 5,
dataflow_disk_size_gb: int = 50,
dataflow_service_account: str = '',
dataflow_subnetwork: str = '',
dataflow_use_public_ips: bool = True,
encryption_spec_key_name: str = '',
force_runner_mode: str = '',
project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
) -> NamedTuple('outputs', feature_attributions=kfp.dsl.Metrics):
"""A pipeline to compute feature attributions by sampling data for batch explanations.
This pipeline guarantees support for AutoML Tabular models that contain a
valid explanation_spec.
Args:
location: The GCP region that runs the pipeline components.
prediction_type: The type of prediction the model is to produce.
"classification", "regression", or "forecasting".
vertex_model: The Vertex model artifact used for batch explanation.
batch_predict_instances_format: The format in which instances are given,
must be one of the Model's supportedInputStorageFormats. For more details
about this input config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig.
batch_predict_gcs_destination_output_uri: The Google Cloud Storage location
of the directory where the output is to be written to. In the given
directory a new directory is created. Its name is
``prediction-<model-display-name>-<job-create-time>``, where timestamp is
in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. Inside of it files
``predictions_0001.<extension>``, ``predictions_0002.<extension>``, ...,
``predictions_N.<extension>`` are created where ``<extension>`` depends on
chosen ``predictions_format``, and N may equal 0001 and depends on the
total number of successfully predicted instances. If the Model has both
``instance`` and ``prediction`` schemata defined then each such file
contains predictions as per the ``predictions_format``. If prediction for
any instance failed (partially or completely), then an additional
``errors_0001.<extension>``, ``errors_0002.<extension>``,...,
``errors_N.<extension>`` files are created (N depends on total number of
failed predictions). These files contain the failed instances, as per
their schema, followed by an additional ``error`` field which as value has
``google.rpc.Status`` containing only ``code`` and ``message`` fields. For
more details about this output config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#OutputConfig.
batch_predict_gcs_source_uris: Google Cloud Storage URI(-s) to your
instances to run batch prediction on. May contain wildcards. For more
information on wildcards, see
https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames. For
more details about this input config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig.
batch_predict_bigquery_source_uri: Google BigQuery URI to your instances to
run batch prediction on. May contain wildcards. For more details about
this input config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#InputConfig.
batch_predict_predictions_format: The format in which Vertex AI gives the
predictions. Must be one of the Model's supportedOutputStorageFormats. For
more details about this output config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#OutputConfig.
batch_predict_bigquery_destination_output_uri: The BigQuery project location
where the output is to be written to. In the given project a new dataset
is created with name ``prediction_<model-display-name>_<job-create-time>``
where is made BigQuery-dataset-name compatible (for example, most special
characters become underscores), and timestamp is in
YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two
tables will be created, ``predictions``, and ``errors``. If the Model has
both ``instance`` and ``prediction`` schemata defined then the tables have
columns as follows: The ``predictions`` table contains instances for which
the prediction succeeded, it has columns as per a concatenation of the
Model's instance and prediction schemata. The ``errors`` table contains
rows for which the prediction has failed, it has instance columns, as per
the instance schema, followed by a single "errors" column, which as values
has ````google.rpc.Status`` <Status>``__ represented as a STRUCT, and
containing only ``code`` and ``message``. For more details about this
output config, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#OutputConfig.
batch_predict_machine_type: The type of machine for running batch prediction
on dedicated resources. If the Model supports DEDICATED_RESOURCES this
config may be provided (and the job will use these resources). If the
Model doesn't support AUTOMATIC_RESOURCES, this config must be provided.
For more details about the BatchDedicatedResources, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/projects.locations.batchPredictionJobs#BatchDedicatedResources.
For more details about the machine spec, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec
batch_predict_starting_replica_count: The number of machine replicas used at
the start of the batch operation. If not set, Vertex AI decides starting
number, not greater than ``max_replica_count``. Only used if
``machine_type`` is set.
batch_predict_max_replica_count: The maximum number of machine replicas the
batch operation may be scaled to. Only used if ``machine_type`` is set.
batch_predict_explanation_metadata: Explanation metadata configuration for
this BatchPredictionJob. Can be specified only if ``generate_explanation``
is set to ``True``. This value overrides the value of
``Model.explanation_metadata``. All fields of ``explanation_metadata`` are
optional in the request. If a field of the ``explanation_metadata`` object
is not populated, the corresponding field of the
``Model.explanation_metadata`` object is inherited. For more details, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/ExplanationSpec#explanationmetadata.
batch_predict_explanation_parameters: Parameters to configure explaining for
Model's predictions. Can be specified only if ``generate_explanation`` is
set to ``True``. This value overrides the value of
``Model.explanation_parameters``. All fields of ``explanation_parameters``
are optional in the request. If a field of the ``explanation_parameters``
object is not populated, the corresponding field of the
``Model.explanation_parameters`` object is inherited. For more details,
see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/ExplanationSpec#ExplanationParameters.
batch_predict_explanation_data_sample_size: Desired size to downsample the
input dataset that will then be used for batch explanation.
batch_predict_accelerator_type: The type of accelerator(s) that may be
attached to the machine as per ``batch_predict_accelerator_count``. Only
used if ``batch_predict_machine_type`` is set. For more details about the
machine spec, see
https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec
batch_predict_accelerator_count: The number of accelerators to attach to the
``batch_predict_machine_type``. Only used if
``batch_predict_machine_type`` is set.
dataflow_machine_type: The Dataflow machine type for evaluation components.
dataflow_max_num_workers: The max number of Dataflow workers for evaluation
components.
dataflow_disk_size_gb: Dataflow worker's disk size in GB for evaluation
components.
dataflow_service_account: Custom service account to run Dataflow jobs.
dataflow_subnetwork: Dataflow's fully qualified subnetwork name, when empty
the default subnetwork will be used. Example:
https://cloud.google.com/dataflow/docs/guides/specifying-networks#example_network_and_subnetwork_specifications
dataflow_use_public_ips: Specifies whether Dataflow workers use public IP
addresses.
encryption_spec_key_name: Customer-managed encryption key options. If set,
resources created by this pipeline will be encrypted with the provided
encryption key. Has the form:
``projects/my-project/locations/my-location/keyRings/my-kr/cryptoKeys/my-key``.
The key needs to be in the same region as where the compute resource is
created.
force_runner_mode: Indicate the runner mode to use forcely. Valid options
are ``Dataflow`` and ``DirectRunner``.
project: The GCP project that runs the pipeline components. Defaults to the
project in which the PipelineJob is run.
Returns:
A system.Metrics artifact with feature attributions.
"""
outputs = NamedTuple('outputs', feature_attributions=kfp.dsl.Metrics)
# Sample the input dataset for a quicker batch explanation.
data_sampler_task = EvaluationDataSamplerOp(
project=project,
location=location,
gcs_source_uris=batch_predict_gcs_source_uris,
bigquery_source_uri=batch_predict_bigquery_source_uri,
instances_format=batch_predict_instances_format,
sample_size=batch_predict_explanation_data_sample_size,
force_runner_mode=force_runner_mode,
)
# Run batch explain.
batch_explain_task = ModelBatchPredictOp(
project=project,
location=location,
model=vertex_model,
job_display_name='model-registry-batch-explain-evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}',
gcs_source_uris=data_sampler_task.outputs['gcs_output_directory'],
bigquery_source_input_uri=data_sampler_task.outputs[
'bigquery_output_table'
],
instances_format=batch_predict_instances_format,
predictions_format=batch_predict_predictions_format,
gcs_destination_output_uri_prefix=batch_predict_gcs_destination_output_uri,
bigquery_destination_output_uri=batch_predict_bigquery_destination_output_uri,
generate_explanation=True,
explanation_parameters=batch_predict_explanation_parameters,
explanation_metadata=batch_predict_explanation_metadata,
machine_type=batch_predict_machine_type,
starting_replica_count=batch_predict_starting_replica_count,
max_replica_count=batch_predict_max_replica_count,
encryption_spec_key_name=encryption_spec_key_name,
accelerator_type=batch_predict_accelerator_type,
accelerator_count=batch_predict_accelerator_count,
)
# Generate feature attributions from explanations.
feature_attribution_task = ModelEvaluationFeatureAttributionOp(
project=project,
location=location,
problem_type=prediction_type,
predictions_format=batch_predict_predictions_format,
predictions_gcs_source=batch_explain_task.outputs['gcs_output_directory'],
predictions_bigquery_source=batch_explain_task.outputs[
'bigquery_output_table'
],
dataflow_machine_type=dataflow_machine_type,
dataflow_max_workers_num=dataflow_max_num_workers,
dataflow_disk_size_gb=dataflow_disk_size_gb,
dataflow_service_account=dataflow_service_account,
dataflow_subnetwork=dataflow_subnetwork,
dataflow_use_public_ips=dataflow_use_public_ips,
encryption_spec_key_name=encryption_spec_key_name,
force_runner_mode=force_runner_mode,
)
return outputs(
feature_attributions=feature_attribution_task.outputs[
'feature_attributions'
]
)

View File

@ -17,7 +17,7 @@ from typing import NamedTuple
from google_cloud_pipeline_components import _image from google_cloud_pipeline_components import _image
from google_cloud_pipeline_components import _placeholders from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model_evaluation import LLMSafetyBiasMetricsOp from google_cloud_pipeline_components._implementation.model_evaluation.llm_safety_bias.component import llm_safety_bias_metrics as LLMSafetyBiasMetricsOp
from google_cloud_pipeline_components.types.artifact_types import VertexBatchPredictionJob from google_cloud_pipeline_components.types.artifact_types import VertexBatchPredictionJob
from kfp import dsl from kfp import dsl
from kfp.dsl import Artifact from kfp.dsl import Artifact

View File

@ -14,11 +14,15 @@
"""Model evaluation preview components.""" """Model evaluation preview components."""
from google_cloud_pipeline_components.preview.model_evaluation.data_bias_component import detect_data_bias as DetectDataBiasOp from google_cloud_pipeline_components.preview.model_evaluation.data_bias_component import detect_data_bias as DetectDataBiasOp
from google_cloud_pipeline_components.preview.model_evaluation.evaluation_llm_classification_pipeline import evaluation_llm_classification_pipeline
from google_cloud_pipeline_components.preview.model_evaluation.evaluation_llm_text_generation_pipeline import evaluation_llm_text_generation_pipeline
from google_cloud_pipeline_components.preview.model_evaluation.feature_attribution_component import feature_attribution as ModelEvaluationFeatureAttributionOp from google_cloud_pipeline_components.preview.model_evaluation.feature_attribution_component import feature_attribution as ModelEvaluationFeatureAttributionOp
from google_cloud_pipeline_components.preview.model_evaluation.feature_attribution_graph_component import feature_attribution_graph_component as FeatureAttributionGraphComponentOp from google_cloud_pipeline_components.preview.model_evaluation.feature_attribution_graph_component import feature_attribution_graph_component as FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components.preview.model_evaluation.model_bias_component import detect_model_bias as DetectModelBiasOp from google_cloud_pipeline_components.preview.model_evaluation.model_bias_component import detect_model_bias as DetectModelBiasOp
__all__ = [ __all__ = [
'evaluation_llm_classification_pipeline',
'evaluation_llm_text_generation_pipeline',
'ModelEvaluationFeatureAttributionOp', 'ModelEvaluationFeatureAttributionOp',
'FeatureAttributionGraphComponentOp', 'FeatureAttributionGraphComponentOp',
'DetectModelBiasOp', 'DetectModelBiasOp',

View File

@ -16,7 +16,7 @@ from typing import List, NamedTuple
from google_cloud_pipeline_components import _placeholders from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model_evaluation import EvaluationDataSamplerOp from google_cloud_pipeline_components._implementation.model_evaluation import EvaluationDataSamplerOp
from google_cloud_pipeline_components.preview.model_evaluation import ModelEvaluationFeatureAttributionOp from google_cloud_pipeline_components.preview.model_evaluation.feature_attribution_component import feature_attribution as ModelEvaluationFeatureAttributionOp
from google_cloud_pipeline_components.types.artifact_types import VertexModel from google_cloud_pipeline_components.types.artifact_types import VertexModel
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp
import kfp import kfp

View File

@ -16,8 +16,8 @@ from typing import Any, Dict, List, NamedTuple
from google_cloud_pipeline_components import _placeholders from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model import GetVertexModelOp from google_cloud_pipeline_components._implementation.model import GetVertexModelOp
from google_cloud_pipeline_components._implementation.model_evaluation import FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
from google_cloud_pipeline_components.preview.model_evaluation import FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics
from google_cloud_pipeline_components.types.artifact_types import RegressionMetrics from google_cloud_pipeline_components.types.artifact_types import RegressionMetrics
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp

View File

@ -16,9 +16,9 @@ from typing import Any, Dict, List, NamedTuple
from google_cloud_pipeline_components import _placeholders from google_cloud_pipeline_components import _placeholders
from google_cloud_pipeline_components._implementation.model import GetVertexModelOp from google_cloud_pipeline_components._implementation.model import GetVertexModelOp
from google_cloud_pipeline_components._implementation.model_evaluation import FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp from google_cloud_pipeline_components._implementation.model_evaluation import ModelImportEvaluationOp
from google_cloud_pipeline_components._implementation.model_evaluation import TargetFieldDataRemoverOp from google_cloud_pipeline_components._implementation.model_evaluation import TargetFieldDataRemoverOp
from google_cloud_pipeline_components.preview.model_evaluation import FeatureAttributionGraphComponentOp
from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics from google_cloud_pipeline_components.types.artifact_types import ClassificationMetrics
from google_cloud_pipeline_components.types.artifact_types import RegressionMetrics from google_cloud_pipeline_components.types.artifact_types import RegressionMetrics
from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp from google_cloud_pipeline_components.v1.batch_predict_job import ModelBatchPredictOp