modernize-wml-pipeline (#1227)
* modernized-wml-pipeline * simplifying-params
This commit is contained in:
parent
bb0a5e36f6
commit
f6283d4583
|
|
@ -16,60 +16,63 @@ CONFIG_FILE_URL = 'https://raw.githubusercontent.com/user-name/kfp-secrets/maste
|
|||
|
||||
# generate default secret name
|
||||
import os
|
||||
secret_name = 'ai-pipeline-' + os.path.splitext(os.path.basename(CONFIG_FILE_URL))[0]
|
||||
|
||||
# create pipelines
|
||||
import kfp.dsl as dsl
|
||||
import kfp
|
||||
from kfp import components
|
||||
from kfp import dsl
|
||||
import ai_pipeline_params as params
|
||||
|
||||
secret_name = 'kfp-creds'
|
||||
configuration_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/commons/config/component.yaml')
|
||||
train_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/train/component.yaml')
|
||||
store_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/store/component.yaml')
|
||||
deploy_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/master/components/ibm-components/watson/deploy/component.yaml')
|
||||
|
||||
# create pipelines
|
||||
|
||||
@dsl.pipeline(
|
||||
name='KFP on WML training',
|
||||
description='Kubeflow pipelines running on WML performing tensorflow image recognition.'
|
||||
)
|
||||
def kfp_wml_pipeline(
|
||||
GITHUB_TOKEN='',
|
||||
CONFIG_FILE_URL='https://raw.githubusercontent.com/user/repository/branch/creds.ini',
|
||||
train_code='tf-model.zip',
|
||||
execution_command='\'python3 convolutional_network.py --trainImagesFile ${DATA_DIR}/train-images-idx3-ubyte.gz --trainLabelsFile ${DATA_DIR}/train-labels-idx1-ubyte.gz --testImagesFile ${DATA_DIR}/t10k-images-idx3-ubyte.gz --testLabelsFile ${DATA_DIR}/t10k-labels-idx1-ubyte.gz --learningRate 0.001 --trainingIters 20000\'',
|
||||
framework= 'tensorflow',
|
||||
framework_version = '1.5',
|
||||
runtime = 'python',
|
||||
runtime_version = '3.5',
|
||||
run_definition = 'wml-tensorflow-definition',
|
||||
run_name = 'wml-tensorflow-run',
|
||||
model_name='wml-tensorflow-mnist',
|
||||
scoring_payload='tf-mnist-test-payload.json'
|
||||
):
|
||||
# op1 - this operation will create the credentials as secrets to be used by other operations
|
||||
config_op = dsl.ContainerOp(
|
||||
name="config",
|
||||
image="aipipeline/wml-config",
|
||||
command=['python3'],
|
||||
arguments=['/app/config.py',
|
||||
'--token', GITHUB_TOKEN,
|
||||
'--url', CONFIG_FILE_URL],
|
||||
file_outputs={'secret-name' : '/tmp/'+secret_name}
|
||||
get_configuration = configuration_op(
|
||||
token = GITHUB_TOKEN,
|
||||
url = CONFIG_FILE_URL,
|
||||
name = secret_name
|
||||
)
|
||||
|
||||
# op2 - this operation trains the model with the model codes and data saved in the cloud object store
|
||||
train_op = dsl.ContainerOp(
|
||||
name="train",
|
||||
image="aipipeline/wml-train",
|
||||
command=['python3'],
|
||||
arguments=['/app/wml-train.py',
|
||||
'--config', config_op.output,
|
||||
'--train-code', 'tf-model.zip',
|
||||
'--execution-command', '\'python3 convolutional_network.py --trainImagesFile ${DATA_DIR}/train-images-idx3-ubyte.gz --trainLabelsFile ${DATA_DIR}/train-labels-idx1-ubyte.gz --testImagesFile ${DATA_DIR}/t10k-images-idx3-ubyte.gz --testLabelsFile ${DATA_DIR}/t10k-labels-idx1-ubyte.gz --learningRate 0.001 --trainingIters 20000\''],
|
||||
file_outputs={'run-uid' : '/tmp/run_uid'}).apply(params.use_ai_pipeline_params(secret_name))
|
||||
wml_train = train_op(
|
||||
get_configuration.output,
|
||||
train_code,
|
||||
execution_command
|
||||
).apply(params.use_ai_pipeline_params(secret_name))
|
||||
|
||||
# op3 - this operation stores the model trained above
|
||||
store_op = dsl.ContainerOp(
|
||||
name="store",
|
||||
image="aipipeline/wml-store",
|
||||
command=['python3'],
|
||||
arguments=['/app/wml-store.py',
|
||||
'--run-uid', train_op.output,
|
||||
'--model-name', 'python-tensorflow-mnist'],
|
||||
file_outputs={'model-uid' : '/tmp/model_uid'}).apply(params.use_ai_pipeline_params(secret_name))
|
||||
wml_store = store_op(
|
||||
wml_train.output,
|
||||
model_name
|
||||
).apply(params.use_ai_pipeline_params(secret_name))
|
||||
|
||||
# op4 - this operation deploys the model to a web service and run scoring with the payload in the cloud object store
|
||||
deploy_op = dsl.ContainerOp(
|
||||
name="deploy",
|
||||
image="aipipeline/wml-deploy",
|
||||
command=['python3'],
|
||||
arguments=['/app/wml-deploy.py',
|
||||
'--model-uid', store_op.output,
|
||||
'--model-name', 'python-tensorflow-mnist',
|
||||
'--scoring-payload', 'tf-mnist-test-payload.json'],
|
||||
file_outputs={'output' : '/tmp/output'}).apply(params.use_ai_pipeline_params(secret_name))
|
||||
wml_deploy = deploy_op(
|
||||
wml_store.output,
|
||||
model_name,
|
||||
scoring_payload
|
||||
).apply(params.use_ai_pipeline_params(secret_name))
|
||||
|
||||
if __name__ == '__main__':
|
||||
# compile the pipeline
|
||||
|
|
|
|||
Loading…
Reference in New Issue