import keras import kfp from kfp import components chicago_taxi_dataset_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/e3337b8bdcd63636934954e592d4b32c95b49129/components/datasets/Chicago%20Taxi/component.yaml') pandas_transform_csv_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/6162d55998b176b50267d351241100bb0ee715bc/components/pandas/Transform_DataFrame/in_CSV_format/component.yaml') keras_train_classifier_from_csv_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f6aabf7f10b1f545f1fd5079aa8071845224f8e7/components/keras/Train_classifier/from_CSV/component.yaml') keras_convert_hdf5_model_to_tf_saved_model_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/51e49282d9511e4b72736c12dc66e37486849c6e/components/_converters/KerasModelHdf5/to_TensorflowSavedModel/component.yaml') number_of_classes = 2 # Creating the network dense_network_with_sigmoid = keras.Sequential(layers=[ keras.layers.Dense(10, activation=keras.activations.sigmoid), keras.layers.Dense(number_of_classes, activation=keras.activations.sigmoid), ]) def keras_classifier_pipeline(): training_data_in_csv = chicago_taxi_dataset_op( where='trip_start_timestamp >= "2019-01-01" AND trip_start_timestamp < "2019-02-01"', select='tips,trip_seconds,trip_miles,pickup_community_area,dropoff_community_area,fare,tolls,extras,trip_total', limit=1000, ).output training_data_for_classification_in_csv = pandas_transform_csv_op( table=training_data_in_csv, transform_code='''df.insert(0, "was_tipped", df["tips"] > 0); del df["tips"]; df = df.fillna(0)''', ).output features_in_csv = pandas_transform_csv_op( table=training_data_for_classification_in_csv, transform_code='''df = df.drop(columns=["was_tipped"])''', ).output labels_in_csv = pandas_transform_csv_op( table=training_data_for_classification_in_csv, transform_code='''df = df["was_tipped"] * 1''', ).output keras_model_in_hdf5 = keras_train_classifier_from_csv_op( training_features=features_in_csv, training_labels=labels_in_csv, network_json=dense_network_with_sigmoid.to_json(), learning_rate=0.1, num_epochs=100, ).outputs['model'] keras_model_in_tf_format = keras_convert_hdf5_model_to_tf_saved_model_op( model=keras_model_in_hdf5, ).output if __name__ == '__main__': kfp_endpoint = None kfp.Client(host=kfp_endpoint).create_run_from_pipeline_func(keras_classifier_pipeline, arguments={})