# Copyright 2022 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline container no input v2 engine pipeline.""" from __future__ import annotations import unittest import kfp.deprecated as kfp import kfp_server_api from ml_metadata.proto import Execution from kfp.samples.test.utils import KfpTask, TaskInputs, TaskOutputs, TestCase, run_pipeline_func from .pipeline_container_no_input import pipeline_container_no_input def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun, tasks: dict[str, KfpTask], **kwargs): t.assertEqual(run.status, 'Succeeded') t.assertEqual( { 'container-no-input': KfpTask( name='container-no-input', type='system.ContainerExecution', state=Execution.State.COMPLETE, inputs=TaskInputs(parameters={}, artifacts=[]), outputs=TaskOutputs(parameters={}, artifacts=[])) }, tasks, ) if __name__ == '__main__': run_pipeline_func([ TestCase( pipeline_func=pipeline_container_no_input, verify_func=verify, mode=kfp.dsl.PipelineExecutionMode.V2_ENGINE, ), ])