# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp.deprecated import dsl, components from kfp.deprecated.components import create_component_from_func prepare_tensorboard = components.load_component_from_url( 'https://raw.githubusercontent.com/kubeflow/pipelines/1.5.0/components/tensorflow/tensorboard/prepare_tensorboard/component.yaml' ) def train(log_dir: 'URI'): # Reference: https://www.tensorflow.org/tensorboard/get_started import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 def create_model(): return tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model = create_model() model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1 ) model.fit( x=x_train, y=y_train, epochs=5, validation_data=(x_test, y_test), callbacks=[tensorboard_callback] ) # Be careful when choosing a tensorboard image: # * tensorflow/tensorflow may fail with image pull backoff, because of dockerhub rate limiting. # * tensorboard in tensorflow 2.3+ does not work with KFP, refer to https://github.com/kubeflow/pipelines/issues/5521. train_op = create_component_from_func( train, base_image='gcr.io/deeplearning-platform-release/tf2-cpu.2-4' ) @dsl.pipeline(name='pipeline-tensorboard-gcs') def my_pipeline( log_dir=f'gs://{{kfp-default-bucket}}/tensorboard/logs/{dsl.RUN_ID_PLACEHOLDER}' ): prepare_tb_task = prepare_tensorboard(log_dir_uri=log_dir) tensorboard_task = train_op(log_dir=log_dir).after(prepare_tb_task)