# Copyright 2023 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Component with optinal and default input v2 engine pipeline.""" from __future__ import annotations import unittest import kfp.deprecated as kfp from kfp.samples.test.utils import KfpTask from kfp.samples.test.utils import run_pipeline_func from kfp.samples.test.utils import TaskInputs from kfp.samples.test.utils import TaskOutputs from kfp.samples.test.utils import TestCase import kfp_server_api from ml_metadata.proto import Execution from .component_with_optional_inputs import pipeline def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun, tasks: dict[str, KfpTask], **kwargs): t.assertEqual(run.status, 'Succeeded') component_op_dict = tasks['component-op'].get_dict() t.assertEqual( { 'name': 'component-op', 'inputs': { 'parameters': { 'input_str1': 'Hello', 'input_str2': 'World', }, }, 'outputs': {}, 'type': 'system.ContainerExecution', 'state': Execution.State.COMPLETE, }, component_op_dict) if __name__ == '__main__': run_pipeline_func([ TestCase( pipeline_func=pipeline, verify_func=verify, mode=kfp.dsl.PipelineExecutionMode.V2_ENGINE, ), ])