# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Hello world v2 engine pipeline.""" from __future__ import annotations import unittest from kfp.samples.test.utils import KfpTask from kfp.samples.test.utils import run_pipeline_func from kfp.samples.test.utils import TestCase import kfp_server_api from ml_metadata.proto import Execution from .pipeline_with_importer import pipeline_with_importer def verify(t: unittest.TestCase, run: kfp_server_api.ApiRun, tasks: dict[str, KfpTask], **kwargs): t.assertEqual(run.status, 'Succeeded') t.assertCountEqual(['importer', 'train'], tasks.keys(), 'task names') importer = tasks['importer'] train = tasks['train'] t.assertEqual( 'gs://ml-pipeline-playground/shakespeare1.txt', importer.outputs.artifacts[0].uri, 'output artifact uri of importer should be "gs://ml-pipeline-playground/shakespeare1.txt"' ) t.assertEqual( 'gs://ml-pipeline-playground/shakespeare1.txt', train.inputs.artifacts[0].uri, 'input artifact uri of train should be "gs://ml-pipeline-playground/shakespeare1.txt"' ) importer_dict = importer.get_dict() train_dict = train.get_dict() for artifact in importer_dict.get('outputs').get('artifacts'): # pop metadata here because the artifact which got re-imported may have metadata with uncertain data if artifact.get('metadata') is not None: artifact.pop('metadata') for artifact in train_dict.get('inputs').get('artifacts'): # pop metadata here because the artifact which got re-imported may have metadata with uncertain data if artifact.get('metadata') is not None: artifact.pop('metadata') t.assertEqual( { 'name': 'importer', 'inputs': {}, 'outputs': { 'artifacts': [{ 'name': 'artifact', 'type': 'system.Dataset', }], }, 'type': 'system.ImporterExecution', 'state': Execution.State.COMPLETE, }, importer_dict) t.assertEqual( { 'name': 'train', 'inputs': { 'artifacts': [{ 'name': 'dataset', 'type': 'system.Dataset' }], }, 'outputs': { 'artifacts': [{ 'metadata': { 'display_name': 'model' }, 'name': 'model', 'type': 'system.Model' }], 'parameters': { 'scalar': '123' } }, 'type': 'system.ContainerExecution', 'state': Execution.State.COMPLETE, }, train_dict) if __name__ == '__main__': run_pipeline_func([ TestCase( pipeline_func=pipeline_with_importer, verify_func=verify, ), ])