import kfp.dsl as dsl @dsl.pipeline( name='Model-Optimization', description='Convert model using OpenVINO model optimizer' ) def download_optimize_and_upload( input_path: dsl.PipelineParam, output_path: dsl.PipelineParam, mo_options: dsl.PipelineParam): """A one-step pipeline.""" dsl.ContainerOp( name='mo', image='gcr.io/constant-cubist-173123/inference_server/ml_mo:12', command=['convert_model.py'], arguments=[ '--input_path', input_path, '--output_path', output_path, '--mo_options', mo_options], file_outputs={'output': '/tmp/output_path.txt'}) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(download_optimize_and_upload, __file__ + '.tar.gz')