# Prerequisites ## Below are the prerequisites to be satisfied for running the samples. For running the samples you will need a cluster with Kubeflow 1.4.xxx (or later) installed, refer https://github.com/kubeflow/manifests for details. ### Add Minio secret for KServe Apply below secret and service account for KServe to access minio server minio-secret.yaml ```yaml apiVersion: v1 kind: Secret metadata: name: mysecret annotations: serving.kserve.io/s3-endpoint: minio-service.kubeflow:9000 # replace with your s3 endpoint serving.kserve.io/s3-usehttps: "0" # by default 1, for testing with minio you need to set to 0 serving.kserve.io/s3-region: "minio" # replace with the region the bucket is created in serving.kserve.io/s3-useanoncredential: "false" # omitting this is the same as false, if true will ignore credential provided and use anonymous credentials type: Opaque data: AWS_ACCESS_KEY_ID: # replace with your base64 encoded minio credential AWS_SECRET_ACCESS_KEY: # replace with your base64 encoded minio credential --- apiVersion: v1 kind: ServiceAccount metadata: name: sa secrets: - name: mysecret ``` Run the following command to set the secrets ```Kubectl apply -f minio-secret.yaml -n kubeflow-user-example-com``` ### Disable sidecar injection Run the following command to disable sidecar injection ```kubectl label namespace kubeflow-user-example-com istio-injection=disabled --overwrite``` ## Migrate to KServe 0.8.0 Refer: https://kserve.github.io/website/admin/migration/#migrating-from-kubeflow-based-kfserving Note: Install KServe 0.8.0 ### Modify KServe predictor image Edit inferenceservice-config configmap ```kubectl edit cm inferenceservice-config -n kubeflow``` Update the following keys under `predictors -> pytorch` block ```yaml "image": "pytorch/torchserve-kfs", "defaultImageVersion": "0.5.1", "defaultGpuImageVersion": "0.5.1-gpu", ```