# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Two step v2-compatible pipeline.""" from kfp.deprecated import components, dsl from kfp.deprecated.components import InputPath, OutputPath def preprocess( uri: str, some_int: int, output_parameter_one: OutputPath(int), output_dataset_one: OutputPath('Dataset') ): with open(output_dataset_one, 'w') as f: f.write(uri) with open(output_parameter_one, 'w') as f: f.write("{}".format(some_int)) preprocess_op = components.create_component_from_func( preprocess, base_image='python:3.9' ) @components.create_component_from_func def train_op( dataset: InputPath('Dataset'), model: OutputPath('Model'), num_steps: int = 100 ): '''Dummy Training Step.''' with open(dataset, 'r') as input_file: input_string = input_file.read() with open(model, 'w') as output_file: for i in range(num_steps): output_file.write( "Step {}\n{}\n=====\n".format(i, input_string) ) @dsl.pipeline(name='two-step-pipeline') def two_step_pipeline(uri: str = 'uri-to-import', some_int: int = 1234): preprocess_task = preprocess_op(uri=uri, some_int=some_int) train_task = train_op( num_steps=preprocess_task.outputs['output_parameter_one'], dataset=preprocess_task.outputs['output_dataset_one'] )