import kfp from kfp import components chicago_taxi_dataset_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/e3337b8bdcd63636934954e592d4b32c95b49129/components/datasets/Chicago%20Taxi/component.yaml') pandas_transform_csv_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/e69a6694/components/pandas/Transform_DataFrame/in_CSV_format/component.yaml') catboost_train_classifier_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Train_classifier/from_CSV/component.yaml') catboost_train_regression_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Train_regression/from_CSV/component.yaml') catboost_predict_classes_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_classes/from_CSV/component.yaml') catboost_predict_values_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_values/from_CSV/component.yaml') catboost_predict_class_probabilities_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/Predict_class_probabilities/from_CSV/component.yaml') catboost_to_apple_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/convert_CatBoostModel_to_AppleCoreMLModel/component.yaml') catboost_to_onnx_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/f97ad2/components/CatBoost/convert_CatBoostModel_to_ONNX/component.yaml') def catboost_pipeline(): training_data_in_csv = chicago_taxi_dataset_op( where='trip_start_timestamp >= "2019-01-01" AND trip_start_timestamp < "2019-02-01"', select='tips,trip_seconds,trip_miles,pickup_community_area,dropoff_community_area,fare,tolls,extras,trip_total', limit=10000, ).output training_data_for_classification_in_csv = pandas_transform_csv_op( table=training_data_in_csv, transform_code='''df.insert(0, "was_tipped", df["tips"] > 0); del df["tips"]''', ).output catboost_train_regression_task = catboost_train_regression_op( training_data=training_data_in_csv, loss_function='RMSE', label_column=0, num_iterations=200, ) regression_model = catboost_train_regression_task.outputs['model'] catboost_train_classifier_task = catboost_train_classifier_op( training_data=training_data_for_classification_in_csv, label_column=0, num_iterations=200, ) classification_model = catboost_train_classifier_task.outputs['model'] evaluation_data_for_regression_in_csv = training_data_in_csv evaluation_data_for_classification_in_csv = training_data_for_classification_in_csv catboost_predict_values_op( data=evaluation_data_for_regression_in_csv, model=regression_model, label_column=0, ) catboost_predict_classes_op( data=evaluation_data_for_classification_in_csv, model=classification_model, label_column=0, ) catboost_predict_class_probabilities_op( data=evaluation_data_for_classification_in_csv, model=classification_model, label_column=0, ) catboost_to_apple_op(regression_model) catboost_to_apple_op(classification_model) catboost_to_onnx_op(regression_model) catboost_to_onnx_op(classification_model) if __name__ == '__main__': kfp_endpoint=None kfp.Client(host=kfp_endpoint).create_run_from_pipeline_func(catboost_pipeline, arguments={})