import kfp.dsl as dsl @dsl.pipeline( name='Prediction pipeline', description='Execute prediction operation for the dataset from numpy file and test accuracy and latency' ) def openvino_predict( model_bin='gs://intelai_public_models/resnet_50_i8/1/resnet_50_i8.bin', model_xml='gs://intelai_public_models/resnet_50_i8/1/resnet_50_i8.xml', generated_model_dir='gs://your-bucket/folder', input_numpy_file='gs://intelai_public_models/images/imgs.npy', label_numpy_file='gs://intelai_public_models/images/lbs.npy', batch_size=1, scale_div=1, scale_sub=0 ): """A one-step pipeline.""" dsl.ContainerOp( name='openvino-predict', image='gcr.io/constant-cubist-173123/inference_server/ml_predict:5', command=['python3', 'predict.py'], arguments=[ '--model_bin', model_bin, '--model_xml', model_xml, '--input_numpy_file', input_numpy_file, '--label_numpy_file', label_numpy_file, '--batch_size', batch_size, '--scale_div', scale_div, '--scale_sub', scale_sub, '--output_folder', generated_model_dir], file_outputs={}) if __name__ == '__main__': import kfp.compiler as compiler compiler.Compiler().compile(openvino_predict, __file__ + '.tar.gz')