# Queue Pipeline Task This task enables you to queue an [Azure Pipelines](https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops) pipeline from a Kubeflow pipeline. For example, this task may be used to queue the deployment of a model via Azure Pipelines after the model is trained and registered by the Kubeflow pipeline. ## Inputs |Name|Type|Required|Description| |---|---|---|---| |organization|string|Y|The Azure DevOps organization that contains the pipeline to be queued. https[]()://dev.azure.com/`organization`/project/_build?definitionId=id| |project|string|Y|The Azure DevOps project that contains the pipeline to be queued. https[]()://dev.azure.com/organization/`project`/_build?definitionId=id| |id|string|Y|The id of the pipeline definition to queue. Shown in the url as *pipelineId* or *definitionId*. https[]()://dev.azure.com/organization/project/_build?definitionId=`id`| |pat_env|string|one of pat_env or pat_path_env|The name of the environment variable containing the PAT for Azure Pipelines authentication| |pat_path_env|string|one of pat_env or pat_path_env|The name of the environment variable containing a path to the PAT for Azure Pipelines authentication| |sourch_branch|string||The branch of the source code for queuing the pipeline.| |source_version|string||The version (e.g. commit id) of the source code for queuing the pipeline.| |parameters|string||Json serialized string of key-values pairs e.g. `{ 'x': '1', 'y': '2' }`. These values can be accessed as `$(x)` and `$(y)` in the Azure Pipelines pipeline.| ## Outputs Output `output_url_path` holds uri for the newly queued pipeline. ## Usage ```python import os import kfp.compiler as compiler import kfp.components as components from kfp.azure import use_azure_secret from kubernetes.client.models import V1EnvVar component_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), ".") image_repo_name = ".azurecr.io/myrepo" queue_pipeline_op = components.load_component_from_file(os.path.join(component_root, 'queue-pipeline\component.yaml')) queue_pipeline_image_name = image_repo_name + '/queue_pipeline:%s' % ('latest') secret_name = "azdopat" secret_path = "/app/secrets" pat_path_env = "PAT_PATH" secret_file_path_in_volume = "azdopat" organization = # organization project = # project pipeline_id = # id def use_image(image_name): def _use_image(task): task.image = image_name return task return _use_image @dsl.pipeline( name='Azure Sample', description='Queue Azure DevOps pipeline ' ) def azdo_sample(): operations['Queue AzDO pipeline'] = queue_pipeline_op( organization=organization, project=project, id=pipeline_id, pat_path_env=pat_path_env). \ apply(use_secret(secret_name=secret_name, secret_volume_mount_path=secret_path). \ apply(use_azure_secret()). \ apply(use_image(queue_pipeline_image_name)). \ add_env_variable(V1EnvVar( name=pat_path_env, value=secret_path + "/" + secret_file_path_in_volume)) if __name__ == '__main__': compiler.Compiler().compile(azdo_sample, __file__ + '.tar.gz') ```