# flake8: noqa TODO from kfp.components import InputPath, OutputPath def Transform( examples_path: InputPath('Examples'), schema_path: InputPath('Schema'), transform_graph_path: OutputPath('TransformGraph'), transformed_examples_path: OutputPath('Examples'), module_file: str = None, preprocessing_fn: str = None, custom_config: dict = None, ): """A TFX component to transform the input examples. The Transform component wraps TensorFlow Transform (tf.Transform) to preprocess data in a TFX pipeline. This component will load the preprocessing_fn from input module file, preprocess both 'train' and 'eval' splits of input examples, generate the `tf.Transform` output, and save both transform function and transformed examples to orchestrator desired locations. ## Providing a preprocessing function The TFX executor will use the estimator provided in the `module_file` file to train the model. The Transform executor will look specifically for the `preprocessing_fn()` function within that file. An example of `preprocessing_fn()` can be found in the [user-supplied code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py)) of the TFX Chicago Taxi pipeline example. Args: examples: A Channel of 'Examples' type (required). This should contain the two splits 'train' and 'eval'. schema: A Channel of 'SchemaPath' type. This should contain a single schema artifact. module_file: The file path to a python module file, from which the 'preprocessing_fn' function will be loaded. The function must have the following signature. def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]: ... where the values of input and returned Dict are either tf.Tensor or tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. preprocessing_fn: The path to python function that implements a 'preprocessing_fn'. See 'module_file' for expected signature of the function. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. Returns: transform_graph: Optional output 'TransformPath' channel for output of 'tf.Transform', which includes an exported Tensorflow graph suitable for both training and serving; transformed_examples: Optional output 'ExamplesPath' channel for materialized transformed examples, which includes both 'train' and 'eval' splits. Raises: ValueError: When both or neither of 'module_file' and 'preprocessing_fn' is supplied. """ from tfx.components.transform.component import Transform component_class = Transform #Generated code import json import os import tensorflow from google.protobuf import json_format, message from tfx.types import Artifact, channel_utils, artifact_utils arguments = locals().copy() component_class_args = {} for name, execution_parameter in component_class.SPEC_CLASS.PARAMETERS.items(): argument_value_obj = argument_value = arguments.get(name, None) if argument_value is None: continue parameter_type = execution_parameter.type if isinstance(parameter_type, type) and issubclass(parameter_type, message.Message): # Maybe FIX: execution_parameter.type can also be a tuple argument_value_obj = parameter_type() json_format.Parse(argument_value, argument_value_obj) component_class_args[name] = argument_value_obj for name, channel_parameter in component_class.SPEC_CLASS.INPUTS.items(): artifact_path = arguments[name + '_path'] if artifact_path: artifact = channel_parameter.type() artifact.uri = artifact_path + '/' # ? if channel_parameter.type.PROPERTIES and 'split_names' in channel_parameter.type.PROPERTIES: # Recovering splits subdirs = tensorflow.io.gfile.listdir(artifact_path) artifact.split_names = artifact_utils.encode_split_names(sorted(subdirs)) component_class_args[name] = channel_utils.as_channel([artifact]) component_class_instance = component_class(**component_class_args) input_dict = {name: channel.get() for name, channel in component_class_instance.inputs.get_all().items()} output_dict = {name: channel.get() for name, channel in component_class_instance.outputs.get_all().items()} exec_properties = component_class_instance.exec_properties # Generating paths for output artifacts for name, artifacts in output_dict.items(): base_artifact_path = arguments[name + '_path'] # Are there still cases where output channel has multiple artifacts? for idx, artifact in enumerate(artifacts): subdir = str(idx + 1) if idx > 0 else '' artifact.uri = os.path.join(base_artifact_path, subdir) # Ends with '/' print('component instance: ' + str(component_class_instance)) #executor = component_class.EXECUTOR_SPEC.executor_class() # Same executor = component_class_instance.executor_spec.executor_class() executor.Do( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, ) if __name__ == '__main__': import kfp kfp.components.func_to_container_op( Transform, base_image='tensorflow/tfx:0.21.4', output_component_file='component.yaml' )