{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train and deploy with FfDL and Seldon demo\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### A simple IBM OSS pipeline demonstrates how to train a model using Fabric for Deep Learning and then deploy it with Seldon.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model for this pipeline\n",
"\n",
"We will be training a PyTorch model that can classify the gender of a human face image. This PyTorch model is a simple convolutional neural network (CNN) with 3 convolutional layers and 2 fully connected layers using the [UTKFace](https://susanqq.github.io/UTKFace/) dataset. We will be training for 5 epochs for the purpose of this demo.\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Define the necessary environment variables and install the KubeFlow Pipeline SDK\n",
"We assume this notebook kernel has access to Python's site-packages and is in Python3.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config_file_url = ''\n",
"github_token = ''"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Install the necessary python packages\n",
"\n",
"Note: Please change pip to the package manager that's used for this Notebook Kernel."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install kfp --upgrade\n",
"!pip install ai_pipeline_params --upgrade"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import the KubeFlow Pipeline library and define the client and experiment "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import kfp\n",
"from kfp import compiler\n",
"import kfp\n",
"from kfp import components\n",
"from kfp import dsl\n",
"from kfp import notebook\n",
"\n",
"# Run client with KUBEFLOW_PIPELINE_LINK if this notebook server\n",
"# is running on localhost without enterprise gateway.\n",
"\n",
"# KUBEFLOW_PIPELINE_LINK = ''\n",
"# client = kfp.Client(KUBEFLOW_PIPELINE_LINK)\n",
"\n",
"client = kfp.Client()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Define pipeline tasks using the kfp library. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# define secret name that contains the credentials for this pipeline, and load components\n",
"secret_name = 'kfp-creds'\n",
"configuration_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/commons/config/component.yaml')\n",
"train_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/train/component.yaml')\n",
"serve_op = components.load_component_from_url('https://raw.githubusercontent.com/kubeflow/pipelines/eb830cd73ca148e5a1a6485a9374c2dc068314bc/components/ibm-components/ffdl/serve/component.yaml')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import kfp.dsl as dsl\n",
"import ai_pipeline_params as params\n",
"\n",
"\n",
"# create pipeline\n",
"@dsl.pipeline(\n",
" name='FfDL pipeline',\n",
" description='A pipeline for machine learning workflow using Fabric for Deep Learning and Seldon.'\n",
")\n",
"def ffdlPipeline(\n",
" GITHUB_TOKEN=github_token,\n",
" CONFIG_FILE_URL=config_file_url,\n",
" model_def_file_path='gender-classification.zip',\n",
" manifest_file_path='manifest.yml',\n",
" model_deployment_name='gender-classifier',\n",
" model_class_name='ThreeLayerCNN',\n",
" model_class_file='gender_classification.py'\n",
"):\n",
" \"\"\"A pipeline for end to end machine learning workflow.\"\"\"\n",
"\n",
" get_configuration = configuration_op(\n",
" token = GITHUB_TOKEN,\n",
" url = CONFIG_FILE_URL,\n",
" name = secret_name\n",
" )\n",
"\n",
" train = train_op(\n",
" model_def_file_path,\n",
" manifest_file_path\n",
" ).apply(params.use_ai_pipeline_params(secret_name))\n",
"\n",
" serve = serve_op(\n",
" train.output, \n",
" model_deployment_name, \n",
" model_class_name, \n",
" model_class_file\n",
" ).apply(params.use_ai_pipeline_params(secret_name))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Below are the default parameters for the above pipeline, \n",
"# you can customize these parameters for each pipeline run.\n",
"\n",
"parameters={'config-file-url': config_file_url,\n",
" 'github-token': github_token,\n",
" 'model-def-file-path': 'gender-classification.zip',\n",
" 'manifest-file-path': 'manifest.yml',\n",
" 'model-deployment-name': 'gender-classifier',\n",
" 'model-class-name': 'ThreeLayerCNN',\n",
" 'model-class-file': 'gender_classification.py'}\n",
"\n",
"\n",
"run = client.create_run_from_pipeline_func(ffdlPipeline, arguments=parameters).run_info\n",
"\n",
"import IPython\n",
"html = ('
'\n", " % (client._get_url_prefix(), run.id))\n", "IPython.display.HTML(html)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }