name: 'SageMaker - Batch Transformation' description: | Batch Transformation Jobs in SageMaker inputs: - {name: region, description: 'The region where the cluster launches.'} - {name: model_name, description: 'The name of the model that you want to use for the transform job.'} - {name: input_location, description: 'The S3 location of the data source that is associated with a channel.'} - {name: output_location, description: 'The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job.'} outputs: - {name: output_location, description: 'S3 URI of the transform job results.'} implementation: container: image: seedjeffwan/kubeflow-pipeline-aws-sm:20190501-05 command: ['python'] args: [ batch_transform.py, --region, {inputValue: region}, --model_name, {inputValue: model_name}, --input_location, {inputValue: input_location}, --output_location, {inputValue: output_location}, --output_location_file, {outputPath: output_location}, ]