# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp.compiler._component_builder import GCSHelper from kfp.compiler._component_builder import DockerfileHelper from kfp.compiler._component_builder import CodeGenerator from kfp.compiler._component_builder import ImageBuilder from kfp.compiler._component_builder import VersionedDependency from kfp.compiler._component_builder import DependencyHelper import os import unittest import yaml import tarfile from pathlib import Path import inspect from collections import OrderedDict GCS_BASE = 'gs://kfp-testing/' class TestVersionedDependency(unittest.TestCase): def test_version(self): """ test version overrides min_version and max_version """ version = VersionedDependency(name='tensorflow', version='0.3.0', min_version='0.1.0', max_version='0.4.0') self.assertTrue(version.min_version == '0.3.0') self.assertTrue(version.max_version == '0.3.0') self.assertTrue(version.has_versions()) self.assertTrue(version.name == 'tensorflow') def test_minmax_version(self): """ test if min_version and max_version are configured when version is not given """ version = VersionedDependency(name='tensorflow', min_version='0.1.0', max_version='0.4.0') self.assertTrue(version.min_version == '0.1.0') self.assertTrue(version.max_version == '0.4.0') self.assertTrue(version.has_versions()) def test_min_or_max_version(self): """ test if min_version and max_version are configured when version is not given """ version = VersionedDependency(name='tensorflow', min_version='0.1.0') self.assertTrue(version.min_version == '0.1.0') self.assertTrue(version.has_versions()) version = VersionedDependency(name='tensorflow', max_version='0.3.0') self.assertTrue(version.max_version == '0.3.0') self.assertTrue(version.has_versions()) def test_no_version(self): """ test the no version scenario """ version = VersionedDependency(name='tensorflow') self.assertFalse(version.has_min_version()) self.assertFalse(version.has_max_version()) self.assertFalse(version.has_versions()) class TestDependencyHelper(unittest.TestCase): def test_generate_requirement(self): """ Test generating requirement file """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file = os.path.join(test_data_dir, 'test_requirements.tmp') dependency_helper = DependencyHelper() dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', max_version='0.3.0')) dependency_helper.generate_pip_requirements(temp_file) golden_requirement_payload = '''\ tensorflow >= 0.10.0, <= 0.11.0 kubernetes >= 0.6.0 pytorch <= 0.3.0 ''' with open(temp_file, 'r') as f: target_requirement_payload = f.read() self.assertEqual(target_requirement_payload, golden_requirement_payload) os.remove(temp_file) def test_add_python_package(self): """ Test add_python_package """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file = os.path.join(test_data_dir, 'test_requirements.tmp') dependency_helper = DependencyHelper() dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.12.0'), override=True) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.8.0'), override=False) dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', version='0.3.0')) dependency_helper.generate_pip_requirements(temp_file) golden_requirement_payload = '''\ tensorflow >= 0.12.0 kubernetes >= 0.6.0 pytorch >= 0.3.0, <= 0.3.0 ''' with open(temp_file, 'r') as f: target_requirement_payload = f.read() self.assertEqual(target_requirement_payload, golden_requirement_payload) os.remove(temp_file) class TestDockerfileHelper(unittest.TestCase): def test_wrap_files_in_tarball(self): """ Test wrap files in a tarball """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file_one = os.path.join(test_data_dir, 'test_data_one.tmp') temp_file_two = os.path.join(test_data_dir, 'test_data_two.tmp') temp_tarball = os.path.join(test_data_dir, 'test_data.tmp.tar.gz') with open(temp_file_one, 'w') as f: f.write('temporary file one content') with open(temp_file_two, 'w') as f: f.write('temporary file two content') # check docker_helper = DockerfileHelper(arc_dockerfile_name='') docker_helper._wrap_files_in_tarball(temp_tarball, {'dockerfile':temp_file_one, 'main.py':temp_file_two}) self.assertTrue(os.path.exists(temp_tarball)) with tarfile.open(temp_tarball) as temp_tarball_handle: temp_files = temp_tarball_handle.getmembers() self.assertTrue(len(temp_files) == 2) for temp_file in temp_files: self.assertTrue(temp_file.name in ['dockerfile', 'main.py']) # clean up os.remove(temp_file_one) os.remove(temp_file_two) os.remove(temp_tarball) def test_generate_dockerfile(self): """ Test generate dockerfile """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') target_dockerfile = os.path.join(test_data_dir, 'component.temp.dockerfile') golden_dockerfile_payload_one = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools ADD main.py /ml/ ENTRYPOINT ["python3", "/ml/main.py"]''' golden_dockerfile_payload_two = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools ADD requirements.txt /ml/ RUN pip3 install -r /ml/requirements.txt ADD main.py /ml/ ENTRYPOINT ["python3", "/ml/main.py"]''' golden_dockerfile_payload_three = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python python-pip python-setuptools ADD requirements.txt /ml/ RUN pip install -r /ml/requirements.txt ADD main.py /ml/ ENTRYPOINT ["python", "/ml/main.py"]''' # check docker_helper = DockerfileHelper(arc_dockerfile_name=target_dockerfile) docker_helper._generate_dockerfile_with_py(target_file=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', python_filepath='main.py', has_requirement_file=False, python_version='python3') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_one) docker_helper._generate_dockerfile_with_py(target_file=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', python_filepath='main.py', has_requirement_file=True, python_version='python3') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_two) docker_helper._generate_dockerfile_with_py(target_file=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', python_filepath='main.py', has_requirement_file=True, python_version='python2') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_three) self.assertRaises(ValueError, docker_helper._generate_dockerfile_with_py, target_file=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', python_filepath='main.py', has_requirement_file=True, python_version='python4') # clean up os.remove(target_dockerfile) def test_prepare_docker_with_py(self): """ Test the whole prepare docker from python function """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') python_filepath = os.path.join(test_data_dir, 'basic.py') local_tarball_path = os.path.join(test_data_dir, 'test_docker.tar.gz') # check docker_helper = DockerfileHelper(arc_dockerfile_name='dockerfile') docker_helper.prepare_docker_tarball_with_py(arc_python_filename='main.py', python_filepath=python_filepath, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.8.0', local_tarball_path=local_tarball_path, python_version='python3') with tarfile.open(local_tarball_path) as temp_tarball_handle: temp_files = temp_tarball_handle.getmembers() self.assertTrue(len(temp_files) == 2) for temp_file in temp_files: self.assertTrue(temp_file.name in ['dockerfile', 'main.py']) # clean up os.remove(local_tarball_path) def test_prepare_docker_with_py_and_dependency(self): """ Test the whole prepare docker from python function and dependencies """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') python_filepath = os.path.join(test_data_dir, 'basic.py') local_tarball_path = os.path.join(test_data_dir, 'test_docker.tar.gz') # check docker_helper = DockerfileHelper(arc_dockerfile_name='dockerfile') dependencies = { VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0'), VersionedDependency(name='kubernetes', min_version='0.6.0'), } docker_helper.prepare_docker_tarball_with_py(arc_python_filename='main.py', python_filepath=python_filepath, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.8.0', local_tarball_path=local_tarball_path, python_version='python3', dependency=dependencies) with tarfile.open(local_tarball_path) as temp_tarball_handle: temp_files = temp_tarball_handle.getmembers() self.assertTrue(len(temp_files) == 3) for temp_file in temp_files: self.assertTrue(temp_file.name in ['dockerfile', 'main.py', 'requirements.txt']) # clean up os.remove(local_tarball_path) def test_prepare_docker_tarball(self): """ Test the whole prepare docker tarball """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') dockerfile_path = os.path.join(test_data_dir, 'component.target.dockerfile') Path(dockerfile_path).touch() local_tarball_path = os.path.join(test_data_dir, 'test_docker.tar.gz') # check docker_helper = DockerfileHelper(arc_dockerfile_name='dockerfile') docker_helper.prepare_docker_tarball(dockerfile_path=dockerfile_path, local_tarball_path=local_tarball_path) with tarfile.open(local_tarball_path) as temp_tarball_handle: temp_files = temp_tarball_handle.getmembers() self.assertTrue(len(temp_files) == 1) for temp_file in temp_files: self.assertTrue(temp_file.name in ['dockerfile']) # clean up os.remove(local_tarball_path) os.remove(dockerfile_path) # hello function is used by the TestCodeGenerator to verify the auto generated python function def hello(): print("hello") class TestCodeGenerator(unittest.TestCase): def test_codegen(self): """ Test code generator a function""" codegen = CodeGenerator(indentation=' ') codegen.begin() codegen.writeline('def hello():') codegen.indent() codegen.writeline('print("hello")') generated_codes = codegen.end() self.assertEqual(generated_codes, inspect.getsource(hello)) def sample_component_func(a: str, b: int) -> float: result = 3.45 if a == "succ": result = float(b + 5) return result def basic_decorator(name): def wrapper(func): return func return wrapper @basic_decorator(name='component_sample') def sample_component_func_two(a: str, b: int) -> float: result = 3.45 if a == 'succ': result = float(b + 5) return result def sample_component_func_three() -> float: return 1.0 class TestImageBuild(unittest.TestCase): def test_generate_kaniko_yaml(self): """ Test generating the kaniko job yaml """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') # check builder = ImageBuilder(gcs_base=GCS_BASE, target_image='') generated_yaml = builder._generate_kaniko_spec(namespace='default', arc_dockerfile_name='dockerfile', gcs_path='gs://mlpipeline/kaniko_build.tar.gz', target_image='gcr.io/mlpipeline/kaniko_image:latest') with open(os.path.join(test_data_dir, 'kaniko.basic.yaml'), 'r') as f: golden = yaml.safe_load(f) self.assertEqual(golden, generated_yaml) def test_generate_entrypoint(self): """ Test entrypoint generation """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') # check builder = ImageBuilder(gcs_base=GCS_BASE, target_image='') generated_codes = builder._generate_entrypoint(component_func=sample_component_func) golden = '''\ def sample_component_func(a: str, b: int) -> float: result = 3.45 if a == "succ": result = float(b + 5) return result def wrapper_sample_component_func(a,b,_output_file): output = sample_component_func(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func(**args) ''' self.assertEqual(golden, generated_codes) generated_codes = builder._generate_entrypoint(component_func=sample_component_func_two) golden = '''\ def sample_component_func_two(a: str, b: int) -> float: result = 3.45 if a == 'succ': result = float(b + 5) return result def wrapper_sample_component_func_two(a,b,_output_file): output = sample_component_func_two(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_two(**args) ''' self.assertEqual(golden, generated_codes) generated_codes = builder._generate_entrypoint(component_func=sample_component_func_three) golden = '''\ def sample_component_func_three() -> float: return 1.0 def wrapper_sample_component_func_three(_output_file): output = sample_component_func_three() import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_three(**args) ''' self.assertEqual(golden, generated_codes) def test_generate_entrypoint_python2(self): """ Test entrypoint generation for python2""" # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') # check builder = ImageBuilder(gcs_base=GCS_BASE, target_image='') generated_codes = builder._generate_entrypoint(component_func=sample_component_func_two, python_version='python2') golden = '''\ def sample_component_func_two(a, b): result = 3.45 if a == 'succ': result = float(b + 5) return result def wrapper_sample_component_func_two(a,b,_output_file): output = sample_component_func_two(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_two(**args) ''' self.assertEqual(golden, generated_codes)