# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from datetime import datetime from kfp import Client import utils ###### Input/Output Instruction ###### # input: yaml # output: local file path # Parsing the input arguments def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('--input', type=str, required=True, help='The path of a pipeline package that will be submitted.') parser.add_argument('--result', type=str, required=True, help='The path of the test result that will be exported.') parser.add_argument('--output', type=str, required=True, help='The path of the test output') parser.add_argument('--namespace', type=str, default='kubeflow', help="namespace of the deployed pipeline system. Default: kubeflow") args = parser.parse_args() return args def main(): args = parse_arguments() test_cases = [] test_name = 'TFX Sample Test' ###### Initialization ###### host = 'ml-pipeline.%s.svc.cluster.local:8888' % args.namespace client = Client(host=host) ###### Check Input File ###### utils.add_junit_test(test_cases, 'input generated yaml file', os.path.exists(args.input), 'yaml file is not generated') if not os.path.exists(args.input): utils.write_junit_xml(test_name, args.result, test_cases) print('Error: job not found.') exit(1) ###### Create Experiment ###### experiment_name = 'TFX sample experiment' response = client.create_experiment(experiment_name) experiment_id = response.id utils.add_junit_test(test_cases, 'create experiment', True) ###### Create Job ###### job_name = 'TFX_sample' params = {'output': args.output, 'project': 'ml-pipeline-test', 'column-names': 'gs://ml-pipeline-dataset/sample-test/taxi-cab-classification/column-names.json', 'evaluation': 'gs://ml-pipeline-dataset/sample-test/taxi-cab-classification/eval20.csv', 'train': 'gs://ml-pipeline-dataset/sample-test/taxi-cab-classification/train50.csv', 'hidden-layer-size': '5', 'steps': '5'} response = client.run_pipeline(experiment_id, job_name, args.input, params) run_id = response.id utils.add_junit_test(test_cases, 'create pipeline run', True) ###### Monitor Job ###### try: start_time = datetime.now() response = client.wait_for_run_completion(run_id, 1200) succ = (response.run.status.lower()=='succeeded') end_time = datetime.now() elapsed_time = (end_time - start_time).seconds utils.add_junit_test(test_cases, 'job completion', succ, 'waiting for job completion failure', elapsed_time) finally: ###### Output Argo Log for Debugging ###### workflow_json = client._get_workflow_json(run_id) workflow_id = workflow_json['metadata']['name'] argo_log, _ = utils.run_bash_command('argo logs -n {} -w {}'.format(args.namespace, workflow_id)) print("=========Argo Workflow Log=========") print(argo_log) if not succ: utils.write_junit_xml(test_name, args.result, test_cases) exit(1) ###### Validate the results ###### #TODO: enable after launch # model analysis html is validated # argo_workflow_id = workflow_json['metadata']['name'] # gcs_html_path = os.path.join(os.path.join(args.output, str(argo_workflow_id)), 'analysis/output_display.html') # print('Output display HTML path is ' + gcs_html_path) # utils.run_bash_command('gsutil cp ' + gcs_html_path + './') # display_file = open('./output_display.html', 'r') # is_next_line_state = False # for line in display_file: # if is_next_line_state: # state = line.strip() # break # if line.strip() == '