# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from kfp.compiler._component_builder import _generate_dockerfile, _dependency_to_requirements, _func_to_entrypoint from kfp.compiler._component_builder import CodeGenerator from kfp.compiler._component_builder import VersionedDependency from kfp.compiler._component_builder import DependencyHelper import os import unittest import yaml import tarfile from pathlib import Path import inspect from collections import OrderedDict from typing import NamedTuple class TestVersionedDependency(unittest.TestCase): def test_version(self): """ test version overrides min_version and max_version """ version = VersionedDependency(name='tensorflow', version='0.3.0', min_version='0.1.0', max_version='0.4.0') self.assertTrue(version.min_version == '0.3.0') self.assertTrue(version.max_version == '0.3.0') self.assertTrue(version.has_versions()) self.assertTrue(version.name == 'tensorflow') def test_minmax_version(self): """ test if min_version and max_version are configured when version is not given """ version = VersionedDependency(name='tensorflow', min_version='0.1.0', max_version='0.4.0') self.assertTrue(version.min_version == '0.1.0') self.assertTrue(version.max_version == '0.4.0') self.assertTrue(version.has_versions()) def test_min_or_max_version(self): """ test if min_version and max_version are configured when version is not given """ version = VersionedDependency(name='tensorflow', min_version='0.1.0') self.assertTrue(version.min_version == '0.1.0') self.assertTrue(version.has_versions()) version = VersionedDependency(name='tensorflow', max_version='0.3.0') self.assertTrue(version.max_version == '0.3.0') self.assertTrue(version.has_versions()) def test_no_version(self): """ test the no version scenario """ version = VersionedDependency(name='tensorflow') self.assertFalse(version.has_min_version()) self.assertFalse(version.has_max_version()) self.assertFalse(version.has_versions()) class TestDependencyHelper(unittest.TestCase): def test_generate_requirement(self): """ Test generating requirement file """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file = os.path.join(test_data_dir, 'test_requirements.tmp') dependency_helper = DependencyHelper() dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', max_version='0.3.0')) dependency_helper.generate_pip_requirements(temp_file) golden_requirement_payload = '''\ tensorflow >= 0.10.0, <= 0.11.0 kubernetes >= 0.6.0 pytorch <= 0.3.0 ''' with open(temp_file, 'r') as f: target_requirement_payload = f.read() self.assertEqual(target_requirement_payload, golden_requirement_payload) os.remove(temp_file) def test_add_python_package(self): """ Test add_python_package """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file = os.path.join(test_data_dir, 'test_requirements.tmp') dependency_helper = DependencyHelper() dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0')) dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.12.0'), override=True) dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.8.0'), override=False) dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', version='0.3.0')) dependency_helper.generate_pip_requirements(temp_file) golden_requirement_payload = '''\ tensorflow >= 0.12.0 kubernetes >= 0.6.0 pytorch >= 0.3.0, <= 0.3.0 ''' with open(temp_file, 'r') as f: target_requirement_payload = f.read() self.assertEqual(target_requirement_payload, golden_requirement_payload) os.remove(temp_file) def sample_component_func(a: str, b: int) -> float: result = 3.45 if a == "succ": result = float(b + 5) return result def basic_decorator(name): def wrapper(func): return func return wrapper @basic_decorator(name='component_sample') def sample_component_func_two(a: str, b: int) -> float: result = 3.45 if a == 'succ': result = float(b + 5) return result def sample_component_func_three() -> float: return 1.0 def sample_component_func_four() -> NamedTuple( 'output', [('a', float), ('b', str)]): from collections import namedtuple output = namedtuple('output', ['a', 'b']) return output(1.0, 'test') class TestGenerator(unittest.TestCase): def test_generate_dockerfile(self): """ Test generate dockerfile """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') target_dockerfile = os.path.join(test_data_dir, 'component.temp.dockerfile') golden_dockerfile_payload_one = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools ADD main.py /ml/main.py ENTRYPOINT ["python3", "-u", "/ml/main.py"]''' golden_dockerfile_payload_two = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools ADD requirements.txt /ml/requirements.txt RUN pip3 install -r /ml/requirements.txt ADD main.py /ml/main.py ENTRYPOINT ["python3", "-u", "/ml/main.py"]''' golden_dockerfile_payload_three = '''\ FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0 RUN apt-get update -y && apt-get install --no-install-recommends -y -q python python-pip python-setuptools ADD requirements.txt /ml/requirements.txt RUN pip install -r /ml/requirements.txt ADD main.py /ml/main.py ENTRYPOINT ["python", "-u", "/ml/main.py"]''' # check _generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', entrypoint_filename='main.py', python_version='python3') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_one) _generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', entrypoint_filename='main.py', python_version='python3', requirement_filename='requirements.txt') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_two) _generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', entrypoint_filename='main.py', python_version='python2', requirement_filename='requirements.txt') with open(target_dockerfile, 'r') as f: target_dockerfile_payload = f.read() self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_three) self.assertRaises(ValueError, _generate_dockerfile, filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', entrypoint_filename='main.py', python_version='python4', requirement_filename='requirements.txt') # clean up os.remove(target_dockerfile) def test_generate_requirement(self): # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') temp_file = os.path.join(test_data_dir, 'test_requirements.tmp') dependencies = [ VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0'), VersionedDependency(name='kubernetes', min_version='0.6.0'), ] _dependency_to_requirements(dependencies, filename=temp_file) golden_payload = '''\ tensorflow >= 0.10.0, <= 0.11.0 kubernetes >= 0.6.0 ''' with open(temp_file, 'r') as f: target_payload = f.read() self.assertEqual(target_payload, golden_payload) os.remove(temp_file) def test_func_to_entrypoint(self): """ Test entrypoint generation """ # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') # check generated_codes = _func_to_entrypoint(component_func=sample_component_func) golden = '''\ def sample_component_func(a: str, b: int) -> float: result = 3.45 if a == "succ": result = float(b + 5) return result def wrapper_sample_component_func(a,b,_output_file): output = sample_component_func(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func(**args) ''' self.assertEqual(golden, generated_codes) generated_codes = _func_to_entrypoint(component_func=sample_component_func_two) golden = '''\ def sample_component_func_two(a: str, b: int) -> float: result = 3.45 if a == 'succ': result = float(b + 5) return result def wrapper_sample_component_func_two(a,b,_output_file): output = sample_component_func_two(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_two(**args) ''' self.assertEqual(golden, generated_codes) generated_codes = _func_to_entrypoint(component_func=sample_component_func_three) golden = '''\ def sample_component_func_three() -> float: return 1.0 def wrapper_sample_component_func_three(_output_file): output = sample_component_func_three() import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_three(**args) ''' self.assertEqual(golden, generated_codes) generated_codes = _func_to_entrypoint(component_func=sample_component_func_four) golden = '''\ from typing import NamedTuple def sample_component_func_four() -> NamedTuple( 'output', [('a', float), ('b', str)]): from collections import namedtuple output = namedtuple('output', ['a', 'b']) return output(1.0, 'test') def wrapper_sample_component_func_four(_output_files): outputs = sample_component_func_four() import os for _output_file, output in zip(_output_files, outputs): os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("_output_files", type=str, nargs=2) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_four(**args) ''' self.assertEqual(golden, generated_codes) def test_func_to_entrypoint_python2(self): """ Test entrypoint generation for python2""" # prepare test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata') # check generated_codes = _func_to_entrypoint(component_func=sample_component_func_two, python_version='python2') golden = '''\ def sample_component_func_two(a, b): result = 3.45 if a == 'succ': result = float(b + 5) return result def wrapper_sample_component_func_two(a,b,_output_file): output = sample_component_func_two(str(a),int(b)) import os os.makedirs(os.path.dirname(_output_file)) with open(_output_file, "w") as data: data.write(str(output)) import argparse parser = argparse.ArgumentParser(description="Parsing arguments") parser.add_argument("a", type=str) parser.add_argument("b", type=int) parser.add_argument("_output_file", type=str) args = vars(parser.parse_args()) if __name__ == "__main__": wrapper_sample_component_func_two(**args) ''' self.assertEqual(golden, generated_codes) # hello function is used by the TestCodeGenerator to verify the auto generated python function def hello(): print("hello") class TestCodeGenerator(unittest.TestCase): def test_codegen(self): """ Test code generator a function""" codegen = CodeGenerator(indentation=' ') codegen.begin() codegen.writeline('def hello():') codegen.indent() codegen.writeline('print("hello")') generated_codes = codegen.end() self.assertEqual(generated_codes, inspect.getsource(hello))