# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # A program to perform training of an XGBoost model through a dataproc cluster. # Usage: # python train.py \ # --project bradley-playground \ # --region us-central1 \ # --cluster ten4 \ # --package gs://bradley-playground/xgboost4j-example-0.8-SNAPSHOT-jar-with-dependencies.jar \ # --output gs://bradley-playground/train/model \ # --conf gs://bradley-playground/trainconf.json \ # --rounds 300 \ # --workers 2 \ # --train gs://bradley-playground/transform/train/part-* \ # --eval gs://bradley-playground/transform/eval/part-* \ # --analysis gs://bradley-playground/analysis \ # --target resolution import argparse import logging from common import _utils def main(argv=None): parser = argparse.ArgumentParser(description='ML Trainer') parser.add_argument('--project', type=str, help='Google Cloud project ID to use.') parser.add_argument('--region', type=str, help='Which zone to run the analyzer.') parser.add_argument('--cluster', type=str, help='The name of the cluster to run job.') parser.add_argument('--package', type=str, help='GCS Path of XGBoost distributed trainer package.') parser.add_argument('--output', type=str, help='GCS path to use for output.') parser.add_argument('--conf', type=str, help='GCS path of the training json config file.') parser.add_argument('--rounds', type=int, help='Number of rounds to train.') parser.add_argument('--workers', type=int, help='Number of workers to use for training.') parser.add_argument('--train', type=str, help='GCS path of the training libsvm file pattern.') parser.add_argument('--eval', type=str, help='GCS path of the eval libsvm file pattern.') parser.add_argument('--analysis', type=str, help='GCS path of the analysis input.') parser.add_argument('--target', type=str, help='Target column name.') args = parser.parse_args() logging.getLogger().setLevel(logging.INFO) api = _utils.get_client() logging.info('Submitting job...') spark_args = [args.conf, str(args.rounds), str(args.workers), args.analysis, args.target, args.train, args.eval, args.output] job_id = _utils.submit_spark_job( api, args.project, args.region, args.cluster, [args.package], 'ml.dmlc.xgboost4j.scala.example.spark.XGBoostTrainer', spark_args) logging.info('Job request submitted. Waiting for completion...') _utils.wait_for_job(api, args.project, args.region, job_id) with open('/output.txt', 'w') as f: f.write(args.output) logging.info('Job completed.') if __name__== "__main__": main()